Progress in Plant Protection

Wpływ mikroorganizmów antagonistycznych na ograniczanie rozwoju grzybów rodzaju Fusarium oraz rozwój siewek pszenicy ozimej
The influence of antagonistic microorganisms on limiting the development of Fusarium fungi and the development of winter wheat seedlings

Katarzyna Pieczul, e-mail: k.pieczul@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 poznań, Polska

Ilona Świerczyńska, e-mail: i.swierczynska@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Aleksandra Sakowska, e-mail: o.grzyb26@gmail.com

Aquanet S.A., Dolna Wilda 126, 61-492 Poznań, Polska

Andrzej Wójtowicz, e-mail: a.wojtowicz@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska
Abstract

Celem prowadzonych badań była ocena wpływu Trichoderma harzianum, Trichoderma atroviride, Sarocladium strictum, Wickerhamo­myces anomalus oraz Bacillus spp. na hamowanie wzrostu grzybni Fusarium spp. oraz rozwój i zdrowotność siewek pszenicy ozimej odmiany Euforia. W warunkach laboratoryjnych, do gatunków najsilniej ograniczających wzrost grzybni Fusarium culmorum, Fusarium graminearum i Fusarium avenaceum należały T. atroviride i T. harzianum. Najsilniej wykształcone strefy hamowania wzrostu obserwo­wano w przypadku bikultur zawierających szczepy Bacillus oraz W. anomalus. Wyniki testów szalkowych, w których oceniano rozwój siewek pszenicy w obecności grzybów patogenicznych i antagonistycznych były zróżnicowane. Do gatunków zapewniających najlepszą ochronę przed F. culmorum i F. graminearum – potencjalnymi sprawcami zgorzeli siewek należał W. anomalus. Wpływ poszczególnych mikroorganizmów antagonistycznych na zieloną masę pszenicy w wariantach z inokulacją patogenami był zmienny. Najwyższe wartości odnotowano w próbach traktowanych T. atroviride, S. strictum oraz Bacillus spp.

 

The study aimed to assess the impact of Trichoderma harzianum, Trichoderma atroviride, Sarocladium strictum, Wickerhamomyces anomalus and Bacillus spp. on the growth inhibition of Fusarium spp. colonies, and on the health and development of winter wheat va­rietas Euforia seedlings. In the laboratory conditions, the presence of T. atroviride and T. harzianum the most strongly limited the growth of the colonies of Fusarium culmorum, Fusarium graminearum and Fusarium avenaceum. Well-developed growth inhibition zones were observed in the bicultures containing strains of Bacillus spp. and W. anomalus. The development of wheat seedlings in the presence of antagonistic and pathogenic fungi was varied, but W. anomalus provided the best protection against damping off caused by F. culmorum and F. graminearum. The influence of individual antagonistic microorganisms in variants with inoculation with pathogenic microorgan­isms on the green mass of wheat seedlings was variable. The best results were achieved with T. atroviride, S. strictum and Bacillus spp.

Key words
patogen; antagonista; zgorzel siewek; Fusarium spp.; pathogen; antagonist; seedlings damping off
References

Akladious S.A., Abbas S.M. 2012. Application of Trichoderma harzianum T22 as a biofertilizer supporting maize growth. African Journal of Biotechnology 11 (35): 8672–8683. DOI: 10.5897/AJB11.4323

 

Alam B., Lǐ J., Gě Q., Khan M.A., Gōng J., Mehmood S., Yuán Y., Gǒng W. 2021. Endophytic fungi: from symbiosis to secondary metabolite communications or vice versa? Frontiers in Plant Science 12: 791033. DOI: 10.3389/fpls.2021.791033

 

Altomare C., Norvell W.A., Björkman T., Harman G.E. 1999. Solubilization of phosphates and micronutrients by the plant growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology 65 (7): 2926–2933. DOI: 10.1128/AEM.65.7.2926-2933.1999

 

Benítez T., Rincón A.M., Limón M.C., Codon A.C. 2004. Biocontrol mechanisms of Trichoderma strains. International Microbiol­ogy 7 (4): 249–260.

 

Blake C., Christensen M.N., Kovács Á.T. 2021. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Molecular Plant-Microbe Interactions 34 (1): 15–25. DOI: 10.1094/MPMI-08-20-0225-CR

 

Cobo-Díaz J.F., Baroncelli R., Le Floch G., Picot A. 2019. Combined metabarcoding and co-occurrence network analysis to profile the bacterial, fungal and Fusarium communities and their interactions in maize stalks. Frontiers in Microbiology 10: 261. DOI: 10.3389/fmicb.2019.00261

 

Colla G., Rouphael Y., Di Mattia E., El-Nakhel C., Cardarelli M. 2015. Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. Journal of the Science of Food and Agriculture 95 (8): 1706–1715. DOI: 10.1002/jsfa.6875

 

Contreras-Cornejo H.A., Macías-Rodríguez L., del-Val E., Larsen J. 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology 92 (4): fiw036. DOI: 10.1093/ femsec/fiw036

 

De Meyer G., Bigirimana J., Elad Y., Höfte M. 1998. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. European Journal of Plant Pathology 104: 279–286. DOI: 10.1023/A:1008628806616

 

Degani O., Dor S. 2021. Trichoderma biological control to protect sensitive maize hybrids against late wilt disease in the field. Journal of Fungi 7 (4): 315. DOI: 10.3390/jof7040315

 

Donoso E.P., Bustamante R.O., Carú M., Niemeyer H.M. 2008. Water deficit as a driver of the mutualistic relationship between the fungus Trichoderma harzianum and two wheat genotypes. Applied and Environmental Microbiology 74 (5): 1412–1417. DOI: 10.1128/AEM.02013-07

 

Etesami H., Alikhani H.A. 2018. Bacillus species as the most promising bacterial biocontrol agents in rhizosphere and endorhiza of plants grown in rotation with each other. European Journal of Plant Pathology 150: 497–506. DOI: 10.1007/s10658-017-1276-8

 

Etesami H., Maheshwari D.K. 2018. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety 156: 225–246. DOI: 10.1016/j.ecoenv.2018.03.013

 

Gaikwad S.N., Salve S.N., Rajurkar S.K. 2018. In vitro antagonistic activity of Trichoderma harzianum against soilborne fungal pathogens. International Journal of Biology Research 3 (2): 87–89.

 

Ghorbanpour M., Omidvari M., Abbaszadeh-Dahaji P., Omidvar R., Kariman K. 2018. Mechanisms underlying the protective ef­fects of beneficial fungi against plant diseases. Biological Control 117: 147–157. DOI: 10.1016/j.biocontrol.2017.11.006

 

Gu Q., Yang Y., Yuan Q., Shi G., Wu L., Lou Z., Huo R., Wu H., Borriss R., Gao X. 2017. Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Applied and Environmental Microbiology 83 (19): e01075-17. DOI: 10.1128/AEM.01075-17

 

Hermosa R., Viterbo A., Chet I., Monte E. 2012. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158 (1): 17–25. DOI: 10.1099/mic.0.052274-0

 

Herrera-Téllez V.I., Cruz-Olmedo A.K., Plasencia J., Gavilanes-Ruíz M., Arce-Cervantes O., Hernández-León S., Saucedo-García M. 2019. The protective effect of Trichoderma asperellum on tomato plants against Fusarium oxysporum and Botrytis cinerea diseases involves inhibition of reactive oxygen species production. International Journal of Molecular Sciences 20 (8): 2007. DOI: 10.3390/ijms20082007

 

Howell C.R. 2002. Cotton seedling preemergence damping-off incited by Rhizopus oryzae and Pythium spp. and its biological control with Trichoderma spp. Phytopathology 92 (2): 177–180. DOI: 10.1094/PHYTO.2002.92.2.177

 

Howell C.R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease 87 (1): 4–10. DOI: 10.1094/PDIS.2003.87.1.4

 

Howell C.R., Hanson L.E., Stipanovic R.D., Puckhaber L.S. 2000. Induction of terpenoid synthesis in cotton roots and con­trol of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90 (3): 248–252. DOI: 10.1094/PHY­TO.2000.90.3.248

 

Khan A.R., Mustafa A., Hyder S., Valipour M., Rizvi Z.F., Gondal A.S., Yousuf Z., Iqbal R., Daraz U. 2022. Bacillus spp. as bio­agents: uses and application for sustainable agriculture. Biology 11 (12): 1763. DOI: 10.3390/biology11121763

 

Khedher S.B., Mejdoub-Trabelsi B., Tounsi S. 2021. Biological potential of Bacillus subtilis V26 for the control of Fusarium wilt and tuber dry rot on potato caused by Fusarium species and the promotion of plant growth. Biological Control 152: 104444. DOI: 10.1016/j.biocontrol.2020.104444

 

Khomari S., Golshan-Doust S., Seyed-Sharifi R., Davari M. 2018. Improvement of soybean seedling growth under salinity stress by biopriming of high-vigour seeds with salt-tolerant isolate of Trichoderma harzianum. New Zealand Journal of Crop and Horticultural Science 46 (2): 117–132. DOI: 10.1080/01140671.2017.1352520

 

Kleifeld O., Chet I. 1992. Trichoderma harzianum – interaction with plants and effect on growth response. Plant and Soil 144: 267–272. DOI: 10.1007/BF00012884

 

Kumar G., Maharshi A., Patel J., Mukherjee A., Singh H.B., Sarma B.K. 2017. Trichoderma: a potential fungal antagonist to con­trol plant diseases. Annual Technical Issue 21: 206–218.

 

Lanhuang B., Yang Q., Godana E.A., Zhang H. 2022. Efficacy of the yeast Wickerhamomyces anomalus in biocontrol of gray mold decay of tomatoes and study of the mechanisms involved. Foods 11 (5): 720. DOI: 10.3390/foods11050720

 

Matroudi S., Zamani M.R. 2009. Antagonistic effects of three species of Trichoderma sp. on Sclerotinia sclerotiorum, the causal agent of canola stem rot. Egyptian Journal of Biology 11: 37–44.

 

Miljaković D., Marinković J., Balešević-Tubić S. 2020. The significance of Bacillus spp. in disease suppression and growth promo­tion of field and vegetable crops. Microorganisms 8 (7): 1037. DOI: 10.3390/microorganisms8071037

 

Monte E. 2001. Understanding Trichoderma: Between biotechnology and microbial ecology. International Microbiology 4 (1): 1–4. DOI: 10.1007/s101230100001

 

Nosir W.S. 2016. Trichoderma harzianum as a growth promoter and bio-control agent against Fusarium oxysporum f. sp. tuberosi. Advances in Crop Science and Technology 4 (2): 1–7. DOI: 10.4172/2329-8863.1000217

 

Pfordt A., Schiwek S., Karlovsky P., von Tiedemann A. 2020. Trichoderma afroharzianum ear rot – a new disease on maize in Europe. Frontiers in Agronomy 2: 547758. DOI: 10.3389/fagro.2020.547758

 

Piegza M., Stolaś J., Kancelista A., Witkowska D. 2009. Wpływ grzybów rodzaju Trichoderma na wzrost patogennych grzybów strzępkowych w testach biotycznych na nietypowych źródłach węgla. Acta Scientiarum Polonorum, Biotechnologia 8 (1): 3–14.

 

Popiel D., Kwaśna H., Chełkowski J., Stępień Ł., Laskowska M. 2008. Impact of selected antagonistic fungi on Fusarium species – toxigenic cereal pathogens. Acta Mycologica 43 (1): 29–40. DOI: 10.5586/am.2008.004

 

Racedo J., Salazar S.M., Castagnaro A.P., Díaz Ricci J.C. 2013. A strawberry disease caused by Acremonium strictum. European Journal of Plant Pathology 137 (4): 649–654. DOI: 10.1007/s10658-013-0279-3

 

Rajeswari P., Kannabiran B. 2011. In vitro effects of antagonistic microorganisms on Fusarium oxysporum [Schlecht. Emend. Synd & Hans] infecting Arachis hypogaea L. Journal of Phytology 3 (3): 83–85.

 

Rawat L., Singh Y., Shukla N., Kumar J. 2011. Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant and Soil 347 (1): 387–400. DOI: 10.1007/ s11104-011-0858-z

 

Raynaldo F.A., Dhanasekaran S., Legrand G., Ngea N., Yang Q., Zhang X., Zhang H. 2021. Investigating the biocontrol potentiality of Wickerhamomyces anomalus against postharvest gray mold decay in cherry tomatoes. Scientia Horticulturae 285: 110137. DOI: 10.1016/j.scienta.2021.110137

 

Rojas E.C., Jensen B., Jørgensen H.J., Latz M.A., Esteban P., Ding Y., Collinge D.B. 2020. Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biological Control 144: 104222. DOI: 10.1016/j.biocon­trol.2020.104222

 

Sánchez-Montesinos B., Santos M., Moreno-Gavíra A., Marín-Rodulfo T., Gea F.J., Diánez F. 2021. Biological control of fungal diseases by Trichoderma aggressivum f. europaeum and its compatibility with fungicides. Journal of Fungi 7 (8): 598. DOI: 10.3390/jof7080598

 

Saxena A.K., Kumar M., Chakdar H., Anuroopa N., Bagyaraj D.J. 2020. Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology 128 (6): 1583–1594. DOI: 10.1111/jam.14506

 

Shoresh M., Harman G.E. 2008. The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inocu­lation of the root: A proteomic approach. Plant Physiology 147 (4): 2147–2163. DOI: 10.1104/pp.108.123810

 

Subedi P., Gattoni K., Liu W., Lawrence K.S., Park S.W. 2020. Current utility of plant growth-promoting rhizobacteria as biological control agents towards plant-parasitic nematodes. Plants 9 (9): 1167. DOI: 10.3390/plants9091167

 

Thambugala K.M., Daranagama D.A., Phillips A.J.L., Kannangara S.D., Promputtha I. 2020. Fungi vs. fungi in biocontrol: an overview of fungal antagonists applied against fungal plant pathogens. Frontiers in Cellular and Infection Microbiology 10: 604923. DOI: 10.3389/fcimb.2020.604923

 

Toral L., Rodríguez M., Béjar V., Sampedro I. 2018. Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea. Frontiers in Microbiology 9: 1315. DOI: 10.3389/fmicb.2018.01315

 

Tyśkiewicz R., Nowak A., Ozimek E., Jaroszuk-Ściseł J. 2022. Trichoderma: the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences 23 (4): 2329. DOI: 10.3390/ijms23042329

 

Verschuere L., Rombaut G., Sorgeloos P., Verstraete W. 2000. Probiotic bacteria as biological control agents in aquaculture. Micro­biology and Molecular Biology Reviews 64 (4): 655–671. DOI: 10.1128/MMBR.64.4.655-671.2000

 

Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Barbetti M.J., Li H., Woo S.L., Lorito M. 2008a. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology 72 (1–3): 80–86. DOI: 10.1016/j.pmpp.2008.05.005

 

Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M. 2008b. Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry 40 (1): 1–10. DOI: 10.1016/j.soilbio.2007.07.002

 

Wojtkowiak-Gębarowska E. 2006. Mechanizmy zwalczania fitopatogenów glebowych przez grzyby z rodzaju Trichoderma. Postępy Mikrobiologii 45 (4): 261–273.

 

Yi Y., Luan P., Liu S., Shan Y., Hou Z., Zhao S., Jia S., Li R. 2022. Efficacy of Bacillus subtilis XZ18-3 as a biocontrol agent against Rhizoctonia cerealis on wheat. Agriculture 12 (2): 258. DOI: 10.3390/agriculture12020258

 

Yin Y., Miao J., Shao W., Liu X., Zhao Y., Ma Z. 2023. Fungicide resistance: progress in understanding mechanism, monitoring, and management. Phytopathology 113 (4): 707–718. DOI: 10.1094/PHYTO-10-22-0370-KD

 

Zafari D., Koushki M.M., Bazgir E. 2008. Biocontrol evaluation of wheat take-all disease by Trichoderma screened isolates. Afri­can Journal of Biotechnology 7 (20): 3650–3656.

 

Zhang F., Yuan J., Yang X., Cui Y., Chen L., Ran W., Shen Q. 2013. Putative Trichoderma harzianum mutant promotes cucum­ber growth by enhanced production of indole acetic acid and plant colonization. Plant and Soil 368: 433–444. DOI: 10.1007/ s11104-012-1519-6

 

Zhu M., Yang Q., Godana E.A., Huo Y., Hu S., Zhang H. 2023. Efficacy of Wickerhamomyces anomalus in the biocontrol of black spot decay in tomatoes and investigation of the mechanisms involved. Biological Control 186: 105356. DOI: 10.1016/j.bio­control.2023.105356

 

Zin N.A., Badaluddin N.A. 2020. Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences 65 (2): 168–178. DOI: 10.1016/j.aoas.2020.09.003

 

Zubair M., Farzand A., Mumtaz F., Khan A.R., Sheikh T.M.M., Haider M.S., Yu C., Wang Y., Ayaz M., Gu Q., Gao X., Wu H. 2021. Novel genetic dysregulations and oxidative damage in Fusarium graminearum induced by plant defense eliciting psychrophilic Bacillus atrophaeus TS1. International Journal of Molecular Sciences 22 (22): 12094. DOI: 10.3390/ijms222212094

Progress in Plant Protection (2024) : 0-0
First published on-line: 2024-08-19 11:11:37
http://dx.doi.org/10.14199/ppp-2024-012
Full text (.PDF) BibTeX Mendeley Back to list