Progress in Plant Protection

Porównanie patogeniczności i wpływu temperatury na szczepy bakterii Photorhabdus i Xenorhabdus
Comparative of the pathogenicity and temperature effects on Photorhabdus and Xenorhabdus bacterial strains

Katarzyna Barszczewska, e-mail: k.barszczewska@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Anna Filipiak, e-mail: a.filipiak@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska
Abstract

Xenorhabdus (Poinar and Thomas, 1979) i Photorhabdus spp. (Boemare, 1993) to entomopatogeniczne bakterie o szerokim zakresie żywicieli, symbiotycznie związane z nicieniami z rodzin Steinernematidae (Filipjev, 1934) i Heterorhabditidae (Poinar, 1976). Entomo­patogeniczne nicienie są wektorami, umożliwiającymi bakteriom wniknięcie do ciała owada, a następnie zabicie larw owadów i prze­kształcenie zwłok w źródło pożywienia odpowiednie dla wzrostu i rozwoju nicieni. W tym badaniu oceniano patogeniczność zawiesiny bakteryjnej Photorhabdus i Xenorhabdus przeciwko larwom Galleria mellonella (L.) (Lepidoptera: Pyralidae). Różne stężenia bakterii (tj. 75, 100 i 125 CFU/ml) zostały wykorzystane do określenia procentowej śmiertelności larw. Śmiertelność przy najwyższym stężeniu osiągnęła 82,5–87,5% po 7 dniach obserwacji. We wszystkich dawkach najwyższą śmiertelność uzyskano po zastosowaniu Xenorhab­dus sp. wyizolowanego z Steinernema kraussei. Aby wybrać odpowiednią temperaturę do dalszych eksperymentów, bakterie poddano działaniu różnych temperatur (15, 20, 25, 30 i 35°C). Wyniki wykazały, że patogeniczność bakterii wzrosła w temperaturze 20°C i spadław temperaturze 35°C. Przedstawione wyniki sugerują, że bakterie Photorhabdus i Xenorhabdus mogą być obiecującymi kandydatami jako czynniki biokontroli, ale należy przeprowadzić więcej badań terenowych w celu przetestowania odporności bakterii na różne warunki środowiskowe.

 

Xenorhabdus (Poinar and Thomas, 1979) and Photorhabdus spp. (Boemare, 1993) are entomopathogenic bacteria with a wide insect host range, symbiotically associated with nematodes of the families Steinernematidae (Filipjev, 1934) and Heterorhabditidae (Poinar, 1976), respectively. Entomopathogenic nematodes are vectors, allowing bacteria to enter the insect’s body, then kill the insect larvae and convert the cadaver into a food source suitable for the growth and development of nematodes. In this study, the pathogenicity of the bacterial suspension of Photorhabdus and Xenorhabdus against Galleria mellonella (L.) (Lepidoptera: Pyralidae) larvae was evaluated. Different bacterial concentrations (i.e., 75, 100 and 125 CFU/ml) were used to determine the percent mortality of larvae. The mortality rate at the highest concentration reached 82.5–87.5% at 7-day follow-up. At all doses, the highest mortality was obtained after the use of Xenorhabdus sp. isolated from Steinernema kraussei. To select an appropriate temperature for further experiment, bacteria were exposed to different temperatures (15, 20, 25, 30 and 35°C). The results showed that bacterial pathogenicity increased at 20°C and decreased at 35°C. The results presented here suggest that Photorhabdus and Xenorhabdus bacteria may be a promising candidate in biocontrol agents, but more field studies should be conducted to test the resistance and robustness of the bacteria to various environ­mental conditions.

Key words
Photorhabdus; Xenorhabdus; nicienie entomopatogenne; Galleria mellonella; patogenność; toksyczność; entomopathogenic nematodes; pathogenicity; toxicity
References

Akhurst R.J. 1982. Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. Microbiology 128 (12): 3061–3065. DOI: 10.1099/00221287-128-12- 3061

 

Akhurst R.J. 1993. Bacterial symbionts of entomopathogenic nematodes the power behind the throne. s. 127–136. W: Nematodes and the Biological Control of Insect Pests (R. Bedding, R. Akhurst, H. Kaya, red.). CSIRO Publications, Melbourne, Australia. ISBN 0-643-05479-0.

 

Akhurst R.J., Boemare N.E. 1988. A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriacea) and proposed elevation of the subspecies of X. nematophilus to species. Journal of General Microbiology 134 (7): 1835–1845. DOI: 10.1099/00221287-134-7-1835

 

Askary T.H. 2010. Nematodes as biocontrol agents. s. 347–378. W: Sociology, Organic Farming, Climate Change and Soil Science (E. Lichtfouse, red.). Springer, Dordrecht, Netherlands, 465 ss. ISBN 978-90-481-3332-1. e-ISBN 978-90-481-3333-8. DOI: 10.1007/978-90-481-3333-8

 

Askary T.H., Abd-Elgawad M.M. 2021. Opportunities and challenges of entomopathogenic nematodes as biocontrol agents in their tripartite interactions. Egyptian Journal of Biological Pest Control 31 (42): 1–10. DOI: 10.1186/s41938-021-00391-9

 

Askary T.H., Bhat A.H., Machado R.A., Ahmad M.J., Abd-Elgawad M.M., Khan A.A., Gani M. 2022. Virulence and reproductive potential of Indian entomopathogenic nematodes against the larvae of the rice meal moth. Archives of Phytopathology and Plant Protection 55 (19): 2237–2249. DOI: 10.1080/03235408.2022.2161293

 

Bedding R.A., Akhurst R.J. 1975. A simple technique for the detection of insect parasitic rhabditid nematode in soil. Nematologica 21 (1): 109–110. DOI: 10.1163/187529275X00419

 

Boemare N.E., Akhurst R.J. 1988. Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae). Microbiology 134 (3): 751–761. DOI: 10.1099/00221287-134-3-751

 

Boemare N.E., Akhurst R.J., Mourant R.G. 1993. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. International Journal of Systematic Bacteriology 43 (2): 249–255. DOI: 10.1099/00207713-43-2-249

 

Burnell A., Stock S.P. 2000. Heterorhabditis, Steinernema and their bacterial symbionts – lethal pathogens of insects. Nematology 2 (1): 31–42. DOI: 10.1163/156854100508872

 

Chen G., Maxwell P., Dunyhy G.B., Webster J.M. 1996. Culture conditions for Xenorhabdus and Photorhabdus symbionts of en­tomopathogenic nematodes. Nematologica 42 (1): 124–130.

 

Clarke D.J. 2020. Photorhabdus: a tale of contrasting interactions. Microbiology 166 (4): 335–348. DOI: 10.1099/mic.0.000907

 

Copping L.G., Menn J.J. 2000. Biopesticides: a review of their action, applications, and efficacy. Pest Management Science 56 (8): 651–676. DOI: 10.1002/1526-4998(200008)56:8<651::AID-PS201>3.0.CO;2-U

 

Duncan D.B. 1955. Multiple range and multiple F tests. Biometrics 11 (1): 1–42. DOI: 10.2307/3001478

 

Elbrense H., Elmasry A.M.A., Seleiman M.F., Al-Harbi M.S., El-Raheem A.M.A. 2021. Can symbiotic bacteria (Xenorhabdus and Photorhabdus) be more efficient than their entomopathogenic nematodes against pieris rapae and pentodon algerinus larvae? Biology 10 (10): 999. DOI: 10.3390/BIOLOGY10100999

 

Federici B.A. 2005. Insecticidal bacteria: an overwhelming success for invertebrate pathology. Journal of Invertebrate Pathology 89 (1): 30–38. DOI: 10.1016/j.jip.2005.06.007

 

Filipjev I.N. 1934. Miscellania nematologica 1. Eine neue Art der Gattung Neoaplectana Steiner nebst Bemerkungen über die systematische Stellung der letzteren. Parasitologicheskii Sbornik Zoologicheskogo Instituta Akademii Nauk SSSR 4: 229–240.

 

Gaines T.B. 1969. Acute toxicity of pesticides. Toxicology and Applied Pharmacology 14 (3): 515–534. DOI: 10.1016/0041- 008X(69)90013-1

 

Guide B.A., Alves V.S., de França E.J.G., Fernandes T.A.P., Andrade N.C., Neves P.M.O.J. 2023. Phenotypic and biochemical characterisation and pathogenicity assessment on Galleria mellonella L. (Lepidoptera: Pyralidae) of symbionts of the entomopatho­genic nematode Heterorhabditis amazonensis. Semina: Ciências Agrárias 44 (3): 1047–1058. DOI: 10.5433/1679-0359.2023v4 4n3p1047

 

Hinchliffe S.J. 2013. Insecticidal toxins from the Photorhabdus and Xenorhabdus bacteria. The Open Toxinology Journal 3 (1): 101–118. DOI: 10.2174/1875414701003010101

 

Hussein M.A., Salem H.A., Hala S., Mahmoud S. 2022. Effects of the nutrition of different diets and lipid content of the insect host larvae, Galleria mellonella on the efficacy of indigenous entomopathogenic nematodes. Journal of Plant Protection Research 62 (3): 265–271. DOI: 10.24425/jppr.2022.142133

 

Kowalska J. 2001. Próba zastosownia nicieni owadobójczych oraz metody integrowanej w zwalczaniu pędraków chrabąszcza majowego Melolontha melolontha L. w uprawie leśnej. [An attempt to use insect-killing nematodes and an integrated method to control May beetle Melolontha melolontha L. grubs in a young forest culture]. Sylwan 2: 89–95.

 

le Vieux P.D., Malan A.P. 2013. The potential use of entomopathogenic nematodes to control Planococcus ficus (Signoret) (Hemip­tera: Pseudococcidae). South African Society for Enology and Viticulture 34 (2): 296–306. DOI: 10.21548/34-2-1109

 

Maguire R., Duggan O., Kavanagh K. 2016. Evaluation of Galleria mellonella larvae as an in vivo model for assessing the relative toxicity of food preservative agents. Cell Biology and Toxicology 32 (3): 209–216. DOI: 10.1007/s10565-016-9329-x

 

Mahar A.N., Darban D.A., Lanjar A.G., Munir N.D.M., Hague J.N.G.M., Gowen S.R. 2005. Influence of temperature on the production and infectivity of entomopathogenic nematodes against larvae and pupae of vine weevil, Otiorhynchus sulcatus, (Coleoptera: Curculionidae). Journal of Entomology 2 (1): 92–96. DOI: 10.3923/je.2005.92.96

 

Maher A.M., Asaiyah M.A., Brophy C., Griffin C.T. 2017. An entomopathogenic nematode extends its niche by associating with different symbionts. Microbial Ecology 73 (1): 211–223. DOI: 10.1007/s00248-016-0829-2

 

Mathur C., Phani V., Kushwah J., Somvanshi V.S., Dutta T.K. 2019. TcaB, an insecticidal protein from Photorhabdus akhurstii causes cytotoxicity in the greater wax moth, Galleria mellonella. Pesticide Biochemistry and Physiology 157: 219–229. DOI: 10.1016/j.pestbp.2019.03.019

 

Matuska-Łyżwa J., Huruk S., Wiatr M. 2012. Potential of autochthonicpopulation of entomopathogenic nematodes in application to control of cockchafer grubs (Melolonthinae). Proceedings of ECOpole 6 (1): 293–296. DOI: 10.2429/proc.2012.6(1)040

 

Poinar Jr. G.O. 1976. Description and biology of a new insect parasitic rhabditoid, Heterorhabditis bacteriophora N. Gen., N. Sp. (Rhabditida; Heterorhabditidae N. Fam.). Nematologica 21 (4): 463–470. DOI: 10.1163/187529275X00239

 

Poinar Jr. G.O., Thomas G.M. 1979. Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family En­terobacteriaceae. International Journal of Systematic and Evolutionary Microbiology 29 (4): 352–360. DOI: 10.1099/00207713- 29-4-352

 

Preininger C., Sauer U., Bejarano A., Berninger T. 2018. Concepts and applications of foliar spray for microbial inoculants. Ap­plied Microbiology and Biotechnology 102 (5): 7265–7282. DOI: 10.1007/s00253-018-9173-4

 

Purnawati A., Sastrahidayat I.R., Abadi A.L., Hadiastono T. 2014. Endophytic bacteria as biocontrol agents of tomato bacterial wilt disease. The Journal of Tropical Life Science 4 (1): 33–36. DOI: 10.11594/jtls.04.01.06

 

Santhoshkumar K., Mathur C., Mandal A., Dutta T.K. 2021. A toxin complex protein from Photorhabdus akhurstii conferred oral insecticidal activity against Galleria mellonella by targeting the midgut epithelium. Microbiological Research 242: 126642. DOI: 10.1016/j.micres.2020.126642

 

Shapiro-Ilan D.I., Gouge D.H., Piggott S.J., Fife J.P. 2006. Application technology and environmental considerations for use of en­tomopathogenic nematodes in biological control. Biological Control 38 (1): 124–133. DOI: 10.1016/j.biocontrol.2005.09.005

 

Sheets J., Aktories K. 2017. Insecticidal toxin complexes from Photorhabdus luminescens. Current Topics in Microbiology and Immunology 402: 3–23. DOI: 10.1007/82_2016_55

 

Sicard M., Tabart J., Boemare N.E., Thaler O., Moulia C. 2005. Effect of phenotypic variation in Xenorhabdus nematophila on its mutualistic relationship with the entomopathogenic nematode Steinernema carpocapsae. Parasitology 131 (5): 687–694. DOI: 10.1017/S0031182005008255

 

Strojny W. 1981. Nasze zwierzęta. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa, 500 ss. ISBN 83-09-00045-6.

 

Tailliez P., Pages S., Ginibre N., Boemare N. 2006. New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. International Journal of Systematic and Evolutionary Microbiology 56 (12): 2805–2818. DOI: 10.1099/ ijs.0.64287-0

 

Thanwisai A., Tandhavanant S., Saiprom N., Waterfield N.R., Ke Long P., Bode H.B., Peacock S.J., Chantratita N. 2012. Isolation of entomopathogenic nematodes and associated Xenorhabdus/Photorhabdus spp. in Thailand. PLOS ONE 7 (9): e43835. DOI: 10.10.1371/journal.pone.0043835

 

Torrini G., Mazza G., Benvenuti C., Roversi P.F. 2017. Susceptibility of olive fruit fly, Bactrocera oleae (Diptera: Tephritidae) pupae to entomopathogenic nematodes. Journal of Plant Protection Research 57 (3): 318–320. DOI: 10.1515/jppr-2017-0030

 

Tsai C.J.Y., Loh J.M.S., Proft T. 2016. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 7 (3): 214–229. DOI: 10.1080/21505594.2015.1135289

 

Tumialis D., Gromadka R., Skrzecz I., Pezowicz E., Mazurkiewicz A., Popowska-Nowak E. 2014. Steinernema kraussei (Steiner, 1923) (Rhabditida: Steinernematidae) – the first record from Poland. Helminthologia 51 (2): 162–166. DOI: 10.2478/s11687- 014-0224-9

 

Wang Y. H., Feng J.T., Zhang Q., Zhang X. 2008. Optimization of fermentation condition for antibiotic production by Xenorhabdus nematophila with response surface methodology. Journal of Applied Microbiology 104 (3): 735–744. DOI: 10.1111/j.1365- 2672.2007.03599.x

 

Waterfield N.R., Bowen D.J., Fetherston J.D., Perry R.D. 2001. The Tc genes of Photorhabdus: a growing family. Trends in Micro­biology 9 (4): 185–191. DOI: 10.1016/S0966-842X (01)01978-3

 

Won E.J., Choi M.J., Shin J.H., Park Y.-J., Byun S.A., Jung J.S., Kim S.H., Shin M.G., Suh S.-P. 2017. Diversity of clinical iso­lates of Aspergillus terreus in antifungal susceptibilities, genotypes, and virulence in Galleria mellonella model: comparison between respiratory and ear isolates. PLOS ONE 12 (10): e0186086. DOI: 10.1371/journal.pone.0186086

 

Xiao Y., Wu K. 2019. Recent progress on the interaction between insects and Bacillus thuringiensis crops. Philosophical Transac­tions of the Royal Society B 374 (1767): 20180316. DOI: 10.1098/rstb.2018.0316

Progress in Plant Protection (2024) : 0-0
First published on-line: 2024-12-05 15:18:22
http://dx.doi.org/10.14199/ppp-2024-019
Full text (.PDF) BibTeX Mendeley Back to list