Progress in Plant Protection

Fungistatyczne właściwości siarki i miedzi – nowe perspektywy w ochronie roślin przed chorobami grzybowymi
Fungistatic properties of sulfur and copper – new perspectives in plant protection against fungal diseases

Zuzanna Sawinska, e-mail: zuzanna.sawinska@up.poznan.pl

Uniwersytet Przyrodniczy w Poznaniu, Dojazd 11, 60-632 Poznań, Polska

Martyna Kotecka, e-mail: martysia99231@wp.pl

Uniwersytet Przyrodniczy w Poznaniu, Dojazd 11, 60-632 Poznań, Polska
Streszczenie

Aktualnie prowadzone badania przynoszą obiecujące uzupełnienie już znanych fungistatycznych właściwości siarki i miedzi, otwierając nowe perspektywy w ochronie roślin przed chorobami powodowanymi przez grzyby. Siarka i miedź, znane ze swoich właściwości sty­mulujących wzrost i rozwój roślin, wykazują również silne działanie przeciwko grzybom chorobotwórczym. Ich skuteczność w zwalczaniu chorób sprawia, że są one coraz częściej stosowane w praktyce rolniczej właśnie jako fungicydy, a nie tylko nawozy. Jednak, aby mak­symalnie wykorzystać potencjał tych substancji, konieczne jest dalsze badanie ich mechanizmów działania oraz optymalizacja metod aplikacji, a przede wszystkim dostosowanie dawek zwłaszcza miedzi. Ponadto, naukowcy poszukują nowych, bardziej efektywnych związ­ków fungistatycznych, które mogłyby być alternatywą dla tradycyjnych pestycydów. Dalsze badania w tej dziedzinie mogą prowadzić do opracowania innowacyjnych strategii ochrony roślin, które będą skuteczniejsze, bezpieczniejsze dla środowiska, a ich stosowanie będzie bardziej zrównoważone dla produkcji rolnej.

 

New research brings promising findings on the fungistatic properties of sulfur and copper, opening up new perspectives in plant pro­tection against fungal diseases. Sulfur and copper, known for their properties that stimulate plant growth and development, also show intense activity against fungal pathogens. Their efficiency in diseases control makes them increasingly used in agricultural practice. How­ever, to maximize the potential of these substances, further on study their mechanisms of action and optimized application methods are required. In addition, scientists are looking for new, more effective fungistatic compounds that could be an alternative to traditional pesticides. Further research in this area could lead to the development of innovative crop protection strategies that are more effective, safer for the environment and more sustainable for agricultural production.

Słowa kluczowe
ochrona roślin; siarka; miedź; właściwości fungistatyczne; crop protection; sulfur; copper; fungicides properties
Referencje

Ameh T., Sayes C.M. 2019. The potential exposure and hazards of copper nanoparticles: A review. Environmental Toxicology and Pharmacology 71: 103220. DOI: 10.1016/j.etap.2019.103220

 

Athawale V., Paralikar P., Ingle A.P., Rai M. 2018. Biogenically engineered nanoparticles inhibit Fusarium oxysporum causing soft-rot of ginger. IET Nanobiotechnology 12 (8): 1084–1089. DOI: 10.1049/iet-nbt.2018.5086

 

Ayres P.G. 2004. Alexis Millardet: France’s forgotten mycologist. Mycologist 18 (1): 23–26. DOI: 10.1017/S0269915X04001090

 

Banik S., Pérez-de-Luque A. 2017. In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants. Spanish Journal of Agricultural Research 15 (2): e1005. DOI: 10.5424/sjar/2017152-10305

 

Barczak B. 2010. Siarka jako składnik pokarmowy kształtujący wielkość i jakość plonów wybranych roślin uprawnych. Rozprawy nr 144. Wydawnictwa Uczelniane Uniwersytetu Technologiczno-Przyrodniczego, Bydgoszcz, 131 ss.

 

Bebber D.P., Gurr S.J. 2015. Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genetics and Biology 74: 62–64. DOI: 10.1016/j.fgb.2014.10.012

 

Bollig K., Specht A., Myint S.S., Zahn M., Horst W.J. 2013. Sulphur supply impairs spread of Verticillium dahliae in tomato. Eu­ropean Journal of Plant Pathology 135 (1): 81–96. DOI: 10.1007/s10658-012-0067-5

 

Bouqellah N.A. 2023. In silico and in vitro investigation of the antifungal activity of trimetallic Cu–Zn-magnetic nanoparticles against Fusarium oxysporum with stimulation of the tomato plant’s drought stress tolerance response. Microbial Pathogenesis 178: 106060. DOI: 10.1016/j.micpath.2023.106060

 

Brennan R. 2003. Comparing copper requirements of faba bean, chickpea, and lentil with spring wheat. Journal of Plant Nutrition 26 (4): 883–899. DOI: 10.1081/PLN-120018572

 

Burkhead J.L., Gogolin Reynolds K.A., Abdel‐Ghany S.E., Cohu C.M., Pilon M. 2009. Copper homeostasis. New Phytologist 182 (4): 799–816. DOI: 10.1111/j.1469-8137.2009.02846.x

 

Cantín C.M., Palou L., Bremer V., Michailides T.J., Crisosto C.H. 2011. Evaluation of the use of sulfur dioxide to reduce postharvest losses on dark and green figs. Postharvest Biology and Technology 59 (2): 150–158. DOI: 10.1016/j.postharvbio.2010.09.016

 

Cao X., Wang C., Luo X., Yue L., White J.C., Elmer W., Dhankher O.P., Wang Z., Xing B. 2021. Elemental sulfur nanoparticles enhance disease resistance in tomatoes. ACS Nano 15 (7): 11817–11827. DOI: 10.1021/acsnano.1c02917

 

Carvalho F.P. 2017. Pesticides, environment, and food safety. Food and Energy Security 6 (2): 48–60. DOI: 10.1002/fes3.108

 

Chen J., Wu L., Song K., Zhu Y., Ding W. 2022. Nonphytotoxic copper oxide nanoparticles are powerful “nanoweapons” that trig­ger resistance in tobacco against the soil-borne fungal pathogen Phytophthora nicotianae. Journal of Integrative Agriculture 21 (11): 3245–3262. DOI: 10.1016/j.jia.2022.08.086

 

Choudhary R.C., Kumaraswamy R.V., Kumari S., Sharma S.S., Pal A., Raliya R., Biswas P., Saharan V. 2017. Cu-chitosan nanopar­ticle boost defense responses and plant growth in maize (Zea mays L.). Scientific Reports 7 (1): 9754. DOI: 10.1038/s41598- 017-08571-0

 

Communication from the Commission to the European parliament, the council, the european economic and social committee and the committee of the regions. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System 2020. Brussels, 20.05.2020. COM(2020) 381.

 

Dłużniewska J., Kulig B. 2017. Wpływ nawożenia azotem i siarką na występowanie chorób rzepaku ozimego. [Influence of nitro­gen and sulphur fertilization on diseases of winter oilseed rape]. Journal of Research and Applications in Agricultural Engineer­ing 62 (3): 80–83.

 

Dubuis P.-H., Marazzi C., Städler E., Mauch F. 2005. Sulphur deficiency causes a reduction in antimicrobial potential and leads to increased disease susceptibility of oilseed rape. Journal of Phytopathology 153 (1): 27–36. DOI: 10.1111/j.1439- 0434.2004.00923.x

 

El-Baky N.A., Amara A.A.A.F. 2021. Recent approaches towards control of fungal diseases in plants: an updated review. Journal of Fungi 7 (11): 900. DOI: 10.3390/jof7110900

 

El-Shewy E. 2019. The efficacy of copper oxide, tri-calcium phosphate and silicon dioxide nanoparticles in controlling black scurf disease of potato. Annals of Agricultural Science, Moshtohor 57 (1): 129–138. DOI: 10.21608/assjm.2019.42223

 

Farahmand H., Robinson G.I., Gerasymchuk M., Kovalchuk I. 2023. Copper sulphate inhibits Penicillium olsonii growth and co­nidiogenesis on Cannabis sativa. Journal of Plant Pathology 105 (4): 1645–1650. DOI: 10.1007/s42161-023-01374-5

 

Fisher M.C., Henk D.A., Briggs C.J., Brownstein J.S., Madoff L.C., McCraw S.L., Gurr S.J. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484 (7393): 186–194. DOI: 10.1038/nature10947

 

Gaba S., Rai A.K., Varma A., Prasad R., Goel A. 2022a. Biocontrol potential of mycogenic copper oxide nanoparticles against Alternaria brassicae. Frontiers in Chemistry 10: 966396. DOI: 10.3389/fchem.2022.966396

 

Gaba S., Varma A., Prasad R., Goel A. 2022b. Exploring the impact of bioformulated copper oxide nanoparticles on cytomorphol­ogy of Alternaria brassicicola. Current Microbiology 79 (8): 244. DOI: 10.1007/s00284-022-02927-0

 

Giczi Z., Kalocsai R., Vona V., Szakál T., Lakatos E., Ásványi B. 2021. Study of the antifungal effect of a copper-containing foliar fertilizer. Cereal Research Communications 49 (2): 337–341. DOI: 10.1007/s42976-020-00108-y

 

Grzanka M., Sobiech Ł., Filipczak A., Danielewicz J., Jajor E., Horoszkiewicz J., Korbas M. 2024. The efficacy of plant pathogens control by complexed forms of copper. Agriculture 14 (1): 139. DOI: 10.3390/agriculture14010139

 

Gu G., Yang S., Yin X., Long Y., Ma Y., Li R., Wang G. 2021. Sulfur induces resistance against canker caused by Pseudomonas syringae pv. actinidae via phenolic components increase and morphological structure modification in the kiwifruit stems. Inter­national Journal of Molecular Sciences 22 (22): 12185. DOI: 10.3390/ijms222212185

 

Gullino M.L., Leroux P., Smith C.M. 2000. Uses and challenges of novel compounds for plant disease control. Crop Protection 19 (1): 1–11. DOI: 10.1016/S0261-2194(99)00095-2

 

Gullner G., Kömives T. 2001. The role of glutathione and glutathione-related enzymes in plant-pathogen interactions. Chapter 9. s. 207–239. DOI: 10.1007/0-306-47644-4_9. W: Significance of Glutathione to Plant Adaptation to the Environment (D. Grill, M. Tausz, L.J. De Kok, red.). Kluwer Academic Publishers. DOI: 10.1007/0-306-47644-4

 

Hao Y., Fang P., Ma C., White J.C., Xiang Z., Wang H., Zhang Z., Rui Y., Xing B. 2019. Engineered nanomaterials inhibit Podo­sphaera pannosa infection on rose leaves by regulating phytohormones. Environmental Research 170: 1–6. DOI: 10.1016/j. envres.2018.12.008

 

Hawkesford M.J., De Kok L.J. 2006. Managing sulphur metabolism in plants. Plant, Cell & Environment 29 (3): 382–395. DOI: 10.1111/j.1365-3040.2005.01470.x

 

Himelblau E., Amasino R.M. 2000. Delivering copper within plant cells. Current Opinion in Plant Biology 3 (3): 205–210. DOI: 10.1016/S1369-5266(00)80066-7

 

Kaczor A., Zuzańska J. 2009. Znaczenie siarki w rolnictwie. [Importance of sulphur in agricultur]. Chemistry-Didactics-Ecology­-Metrology 14 (1–2): 69–78.

 

Kanhed P., Birla S., Gaikwad S., Gade A., Seabra A.B., Rubilar O., Duran N., Rai M. 2014. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Materials Letters 115: 13–17. DOI: 10.1016/j.matlet.2013.10.011

 

Khan A. 1998. The phytoalexin camalexin is not metabolized by Phoma lingam, Alternaria brassicae, or phytopathogenic bacteria. Plant Science 139 (1): 1–8. DOI: 10.1016/S0168-9452(98)00172-1

 

Khatami M., Varma R.S., Heydari M., Peydayesh M., Sedighi A., Askari H.A., Rohani M. 2019. Copper oxide nanoparticles greener synthesis using tea and its antifungal efficiency on Fusarium solani. Geomicrobiology Journal 36 (9): 777–781. DOI: 10.1080/01490451.2019.1621963

 

Klikocka H., Haneklaus S., Bloem E., Schnug E. 2005. Influence of sulfur fertilization on infection of potato tubers with Rhizocto­nia solani and Streptomyces scabies. Journal of Plant Nutrition 28 (5): 819–833. DOI: 10.1081/PLN-200055547

 

Ko E.J., Shin Y.H., Hyun H.N., Song H.S., Hong J.K., Jeun Y.C. 2019. Bio-sulfur pre-treatment suppresses anthracnose on cucum­ber leaves inoculated with Colletotrichum orbiculare. Mycobiology 47 (3): 308–318. DOI: 10.1080/12298093.2019.1628522

 

Korbecka-Glinka G., Piekarska K., Wiśniewska-Wrona M. 2022. The use of carbohydrate biopolymers in plant protection against pathogenic fungi. Polymers 14 (14): 2854. DOI: 10.3390/polym14142854

 

Kruse C., Haas F.H., Jost R., Reiser B., Reichelt M., Wirtz M., Gershenzon J., Schnug E., Hell R. 2012. Improved sulfur nutrition provides the basis for enhanced production of sulfur-containing defense compounds in Arabidopsis thaliana upon inoculation with Alternaria brassicicola. Journal of Plant Physiology 169 (7): 740–743. DOI: 10.1016/j.jplph.2011.12.017

 

Lamichhane J.R., Osdaghi E., Behlau F., Köhl J., Jones J.B., Aubertot J.N. 2018. Thirteen decades of antimicrobial copper com­pounds applied in agriculture. A review. Agronomy for Sustainable Development 38 (3): 28. DOI: 10.1007/s13593-018-0503-9

 

Lázaro E., Makowski D., Vicent A. 2021. Decision support systems halve fungicide use compared to calendar-based strategies without increasing disease risk. Communications Earth & Environment 2 (1): 1–10. DOI: 10.1038/s43247-021-00291-8

 

Ma C., Borgatta J., La Torre-Roche R., Zuverza-Mena N., White J.C., Hamers R.J., Elmer W.H. 2019. Time-dependent transcrip­tional response of tomato (Solanum lycopersicum L.) to Cu nanoparticle exposure upon infection with Fusarium oxysporum f. sp. lycopersici. ACS Sustainable Chemistry & Engineering 7 (11): 10064–10074. DOI: 10.1021/acssuschemeng.9b01433

 

Malandrakis A.A., Kavroulakis N., Chrysikopoulos C.V. 2020. Synergy between Cu-NPs and fungicides against Botrytis cinerea. Science of The Total Environment 703: 135557. DOI: 10.1016/j.scitotenv.2019.135557

 

Marska E., Wróbel J. 2000. Znaczenie siarki dla roślin uprawnych. Folia Universitatis Agriculturae Stetinensis, Agricultura 81: 69–76.

 

McLaughlin M.S., Roy M., Abbasi P.A., Carisse O., Yurgel S.N., Ali S. 2023. Why do we need alternative methods for fungal disease management in plants? Plants 12 (22): 3822. DOI: 10.3390/plants12223822

 

Mondello V., Lemaître-Guillier C., Trotel-Aziz P., Gougeon R., Acedo A., Schmitt-Kopplin P., Adrian M., Pinto C., Fernandez O., Fontaine F. 2022. Assessment of a new copper-based formulation to control esca disease in field and study of its impact on the vine microbiome, vine physiology and enological parameters of the juice. Journal of Fungi 8 (2): 151. DOI: 10.3390/ jof8020151

 

Narayan O.P., Kumar P., Yadav B., Dua M., Johri A.K. 2023. Sulfur nutrition and its role in plant growth and development. Plant Signaling & Behavior 18 (1): 2030082. DOI: 10.1080/15592324.2022.2030082

 

Osonga F.J., Eshun G., Kalra S., Yazgan I., Sakhaee L., Ontman R., Jiang S., Sadik O.A. 2022. Influence of particle size and shapes on the antifungal activities of greener nanostructured copper against Penicillium italicum. ACS Agricultural Science & Tech­nology 2 (1): 42–56. DOI: 10.1021/acsagscitech.1c00102

 

Oziengbe E.O., Osazee J.O. 2012. Antifungal activity of copper sulphate against Colletotrichum gloeosporioides. Journal of Asian Scientific Research 2 (12): 835–839.

 

Palou L., Ali A., Fallik E., Romanazzi G. 2016. GRAS, plant- and animal-derived compounds as alternatives to conventional fun­gicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biology and Technology 122: 41–52. DOI: 10.1016/j.postharvbio.2016.04.017

 

Podleśna A. 2005. Wpływ nawożenia siarką na plonowanie i jakość roślin pastewnych. Wieś Jutra 04: 48–49.

 

Podleśna A. 2020. Siarka – ważny makroskładnik pokarmowy. Studia i Raporty IUNG-PIB 63 (17): 85–102. DOI: 10.26114/SIR. IUNG.2020.63.06

 

Pradubsuk S., Davenport J.R. 2011. Seasonal distribution of micronutrients in mature “concord” grape: boron, iron, manganese, copper, and zinc. Journal of the American Society for Horticultural Science 136 (1): 69–77. DOI: 10.21273/JASHS.136.1.69

 

Quartacci M.F., Cosi E., Meneguzzo S., Sgherri C., Navari‐Izzo F. 2003. Uptake and translocation of copper in Brassicaceae. Jour­nal of Plant Nutrition 26 (5): 1065–1083. DOI: 10.1081/PLN-120020076

 

Rai M., Ingle A.P., Pandit R., Paralikar P., Shende S., Gupta I., Biswas J.K., da Silva S.S. 2018. Copper and copper nanopar­ticles: role in management of insect-pests and pathogenic microbes. Nanotechnology Reviews 7 (4): 303–315. DOI: 10.1515/ ntrev-2018-0031

 

Rodríguez-Ramos F., Briones-Labarca V., Plaza V., Castillo L. 2023. Iron and copper on Botrytis cinerea: new inputs in the cellular characterization of their inhibitory effect. PeerJ 11: e15994. DOI: 10.7717/peerj.15994

 

Roje S. 2006. S-adenosyl-L-methionine: beyond the universal methyl group donor. Phytochemistry 67 (15): 1686–1698. DOI: 10.1016/j.phytochem.2006.04.019

 

Russell P.E. 2005. A century of fungicide evolution. The Journal of Agricultural Science 143 (1): 11–25. DOI: 10.1017/ S0021859605004971

 

Sadek M.E., Shabana Y.M., Sayed-Ahmed K., Abou A.H. 2022. Antifungal activities of sulfur and copper nanoparticles against cucumber postharvest diseases caused by Botrytis cinerea and Sclerotinia sclerotiorum. Journal of Fungi 8 (4): 412. DOI: 10.3390/jof8040412

 

Şanlı A., Özkaya H.Ö. 2022. Determination effects of sulfur applications on some fungal diseases of potato tubers (Solanum tuberosum L.). Turkish Journal of Agriculture – Food Science and Technology 10 (sp1): 2656–2661. DOI: 10.24925/turjaf. v10isp1.2656-2661.5624

 

Sardar M., Ahmed W., Ayoubi S.A., Nisa S., Bibi Y., Sabir M., Khan M.M., Ahmed W., Qayyum A. 2022. Fungicidal synergistic effect of biogenically synthesized zinc oxide and copper oxide nanoparticles against Alternaria citri causing citrus black rot disease. Saudi Journal of Biological Sciences 29 (1): 88–95. DOI: 10.1016/j.sjbs.2021.08.067

 

Savary S., Willocquet L., Pethybridge S.J., Esker P., McRoberts N., Nelson A. 2019. The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution 3 (3): 430–439. DOI: 10.1038/s41559-018-0793-y

 

Shabbir Z., Sardar A., Shabbir A., Abbas G., Shamshad S., Khalid S., Murtaza N.G., Dumat C., Shahid M. 2020. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 259: 127436. DOI: 10.1016/j. chemosphere.2020.127436

 

Singh A.K., Singh K.M., Bharati R.C., Chandra N., Bhatt B.P., Pedapati A. 2014. Potential of residual sulfur and zinc nutrition in improving powdery mildew (Erysiphe trifolii) disease tolerance of lentil (Lens culunaris L.). Communications in Soil Science and Plant Analysis 45 (21): 2807–2818. DOI: 10.1080/00103624.2014.954287

 

Steven B., Hassani M.A., LaReau J.C., Wang Y., White J.C. 2024. Nanoscale sulfur alters the bacterial and eukaryotic com­munities of the tomato rhizosphere and their interactions with a fungal pathogen. NanoImpact 33: 100495. DOI: 10.1016/j. impact.2024.100495

 

Thomas S.G., Hocking T.J., Bilsborrow P.E. 2003. Effect of sulphur fertilisation on the growth and metabolism of sugar beet grown on soils of differing sulphur status. Field Crops Research 83 (3): 223–235. DOI: 10.1016/S0378-4290(03)00075-3

 

Tleuova A.B., Wielogorska E., Talluri P., Štěpánek F., Elliott C.T., Grigoriev D.O. 2020. Recent advances and remaining barriers to producing novel formulations of fungicides for safe and sustainable agriculture. Journal of Controlled Release 326: 468–481. DOI: 10.1016/j.jconrel.2020.07.035

 

Torre A., Iovino V., Caradonia F. 2018. Copper in plant protection: current situation and prospects. Phytopathologia Mediterranea 57 (2): 201–236. DOI: 10.14601/Phytopathol_Mediterr-23407

 

Vanathi P., Rajiv P., Sivaraj R. 2016. Synthesis and characterization of eichhornia-mediated copper oxide nanoparticles and assess­ing their antifungal activity against plant pathogens. Bulletin of Materials Science 39 (5): 1165–1170. DOI: 10.1007/s12034- 016-1276-x

 

Yang L., He M., Ouyang H., Zhu W., Pan Z., Sui Q., Shang L., Zhan J. 2019. Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action. BMC Microbiology 19 (1): 205. DOI: 10.1186/s12866-019-1574-8

 

Yiğit U., Türkkan M., İlhan H., Şimşek T., Güler Ö., Derviş S. 2023. Activity of nanosized copper-boron alloys against Phytoph­thora species. Journal of Plant Pathology 106 (1): 175–190. DOI: 10.1007/s42161-023-01538-3

 

Zubrod J.P., Bundschuh M., Arts G., Brühl C.A., Imfeld G., Knäbel A., Payraudeau S., Rasmussen J.J., Rohr J., Scharmüller A., Smalling K., Stehle S., Schulz R., Schäfer R.B. 2019. Fungicides: an overlooked pesticide class? Environmental Science & Technology 53 (7): 3347–3365. DOI: 10.1021/acs.est.8b04392

Progress in Plant Protection (2024) 64: 97-106
Data pierwszej publikacji on-line: 2024-06-05 14:46:27
http://dx.doi.org/10.14199/ppp-2024-010
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy