Od bakterii do biopreparatu – Bacillus thuringiensis w ochronie roślin
From bacteria to biopreparation – Bacillus thuringiensis in plant protection
Lidia Florczak, e-mail: lidia_florczak@sggw.edu.pl
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Instytut Nauk o Zwierzętach, Katedra Biologii Środowiska Zwierząt, Ciszewskiego 8, 02-786 Warszawa, PolskaStreszczenie |
Bakterie Bacillus thuringiensis (Bt) są szeroko stosowane jako substancje czynne w biologicznych środkach owadobójczych. Wysoka skuteczność oraz selektywność działania sprawiły, że preparaty te stanowią obecnie około 90% światowego rynku bioinsektycydów. Biorąc pod uwagę obecne zapotrzebowanie na biologiczne środki ochrony roślin wynikające z uregulowań prawnych w wielu krajach, szacuje się że do 2030 roku wielkość globalnego rynku insektycydów Bt wzrośnie o 5,2%. Obecnie prowadzone badania nad Bt skupiają się na genetycznym doskonaleniu znanych i stosowanych już szczepów B. thuringiensis, opracowywaniu nowych formulacji biopreparatów oraz poszukiwaniu nowych, bardziej wirulentnych szczepów. Preparaty Bt są szeroko wykorzystywane w rolnictwie i leśnictwie do ochrony roślin przed szkodnikami, zwłaszcza motylami, a w mniejszym stopniu przed chrząszczami i muchówkami.
Bacillus thuringiensis (Bt) bacteria are widely used as active substances in biological insecticides. Their high efficacy and selectivity have led these products to constitute approximately 90% of the global bioinsecticide market. Given the current demand for biological crop protection products driven by legal regulations in many countries, it is estimated that by 2030, the size of the global Bt insecticide market will increase by 5.2%. Current research on Bt focuses on the genetic improvement of known and used B. thuringiensis strains, thedevelopment of new biopesticide formulations and the search for new, more virulent strains. Bt products are widely used in agriculture and forestry to protect plants from pests, particularly lepidopterans and, to a lesser extent, beetles and flies. |
Słowa kluczowe |
bioinsektycydy; Bacillus thuringiensis; toksyny Cry; integrowana ochrona roślin; bioinsecticides; Cry toxins; Integrated Pest Management |
Referencje |
Adang M.J., Crickmore N., Jurat-Fuentes J.L. 2014. Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. Advances in Insect Physiology 47: 39–87. DOI: 10.1016/B978-0-12-800197-4.00002-6
Afzal M.B.S., Ijaz M., Abbas N., Shad S.A., Serrão J.E. 2024. Resistance of lepidopteran pests to Bacillus thuringiensis toxins: evidence of field and laboratory evolved resistance and cross-resistance, mode of resistance inheritance, fitness costs, mechanisms involved and management options. Toxins 16 (7): 315. DOI: 10.3390/toxins16070315
Ahmad S.F., Gulzar A., Tariq M., Rasool B., Khan D., Ullah S., Asad M.J. 2022. Resistance, cross-resistance and stability of resistance to Bacillus thuringiensis kurstaki in Earias vittella (Fabricius) (Lepidoptera: Noctuidae). Biological Control 175: 105058. DOI: 10.1016/j.biocontrol.2022.105058
Arakere U.C., Jagannath S., Krishnamurthy S., Chowdappa S., Konappa N. 2022. Microbial bio-pesticide as sustainable solution for management of pests: achievements and prospects. s. 183–200. W: Biopesticides. Volume 2: Advances in Bio-Inoculants (A. Rakshit, V.S. Meena, P.C. Abhilash, B.K. Sarma, H.B. Singh, L. Fraceto, M. Parihar, A.K. Singh, red.). Elsevier. ISBN 978- 0-12-823355-9. DOI: 10.1016/B978-0-12-823355-9.00016-X
Barbero F., Pogolotti C., Bonelli S., Ferracini C. 2024. Is microbiological control of the box tree moth feasible? Effectiveness and impact on non-target diurnal Lepidoptera. Biological Control 188: 105427. DOI: 10.1016/j.biocontrol.2023.105427
Bartoszewicz M., Czyżewska U. 2017. Taksonomia, wirulencja i cykle życiowe Bacillus cereus sensu lato. [Taxonomy, virulence and life cycles of Bacillus cereus sensu lato]. Postępy Mikrobiologii 56 (4): 440–450.
Berliner E. 1915. Über die Schlaffsucht der Mehlmottenraupe (Ephestia Kuhniella, Zell.) und ihren Erreger Bacillus thuringiensis n. sp. Zeitschrift für Angewandte Entomologie 2 (1): 29–56. DOI: 10.1111/j.1439-0418.1915.tb00334.x
Bravo A., Martínez de Castro D., Sánchez J., Cantón P.E., Mendoza G., Gómez I., Pacheco S., García-Gómez B.I., Onofre J., Ocelotl J., Soberón M. 2015. Mechanism of action of Bacillus thuringiensis insecticidal toxins and their use in the control of insect pests. s. 858–873. W: The Comprehensive Sourcebook of Bacterial Protein Toxins (J.E. Alouf, D. Ladant, M.R. Popoff, red.). Elsevier Ltd., 1200 ss. ISBN 978-012-800-18-82. e-ISBN 978-012-800-58-97.
Bulla L.A., Bechtel D.B., Kramer K.J., Shethna Y.I., Aronson A.I., Fitz-James P.C. 1980. Ultrastructure, physiology, and biochemistry of Bacillus thuringiensis. CRC Critical Reviews in Microbiology 8 (2): 147–204. DOI: 10.3109/10408418009081124
Castella C., Pauron D., Hilliou F., Trang V.T., Zucchini-Pascal N., Gallet A., Barbero P. 2019. Transcriptomic analysis of Spodoptera frugiperda Sf9 cells resistant to Bacillus thuringiensis Cry1Ca toxin reveals that extracellular Ca2+, Mg2+ and production of cAMP are involved in toxicity. Biology Open 8 (4): bio037085. DOI: 10.1242/bio.037085
Chen J., Aimanova K.G., Pan S., Gill S.S. 2009. Identification and characterization of Aedes aegypti aminopeptidase N as a putative receptor of Bacillus thuringiensis Cry11A toxin. Insect Biochemistry and Molecular Biology 39 (10): 688–696. DOI: 10.1016/j. ibmb.2009.08.003
Coyle D.R., Adams J., Bullas-Appleton E., Llewellyn J., Rimmer A., Skvarla M.J., Smith S.M., Chong J.-H. 2022. Identification and management of Cydalima perspectalis (Lepidoptera: Crambidae) in North America. Journal of Integrated Pest Management 13 (1): 24. DOI: 10.1093/jipm/pmac020
Cucchi A., Sanchez de Rivas C. 1998. SASP (small, acid-soluble spore proteins) and spore properties in Bacillus thuringiensis israelensis and Bacillus sphaericus. Current Microbiology 36: 220–225. DOI: 10.1007/s002849900298
DataIntelo 2021. Global Bacillus thuringiensis pesticide market by type. https://dataintelo.com/report/global-bacillus-thuringiensis- -pesticide-market [Accessed: 20.08.2024].
De Bock T., Zhao X., Jacxsens L., Devlieghere F., Rajkovic A., Spanoghe P., Höfte M., Uyttendaele M. 2021. Evaluation of B. thuringiensis-based biopesticides in the primary production of fresh produce as a food safety hazard and risk. Food Control 130 (4): 108390. DOI: 10.1016/j.foodcont.2021.108390
de Maagd R.A. 2014. Bacillus thuringiensis-based products for insect pest control. s. 185–192. W: Principles of Plant-Microbe Interactions. Microbes for Sustainable Agriculture (B. Lugtenberg, red.). Springer, International Publishing, Switzerland. ISBN 978-3-319-08574-6. e-ISBN 978-3-319-08575-3. DOI: 10.1007/978-3-319-08575-3_20
de Maagd R.A., Bravo A., Crickmore N. 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends in Genetics 17 (4): 193–199. DOI: 10.1016/S0168-9525(01)02237-5
de Oliveira J.L., Fraceto L.F., Bravo A., Polanczyk R.A. 2021. Encapsulation strategies for Bacillus thuringiensis: from now to the future. Journal of Agricultural and Food Chemistry 69 (16): 4564–4577. DOI: 10.1021/acs.jafc.0c07118
do Nascimento J., Goncalves K.C., Dias N.P., de Oliveira J.L., Bravo A., Polanczyk R.A. 2022. Adoption of Bacillus thuringiensis- -based biopesticides in agricultural systems and new approaches to improve their use in Brazil. Biological Control 165: 104792. DOI: 10.1016/j.biocontrol.2021.104792
Domínguez-Arrizabalaga M., Villanueva M., Escriche B., Ancín-Azpilicueta C., Caballero P. 2020. Insecticidal activity of Bacillus thuringiensis proteins against coleopteran pests. Toxins 12 (7): 430. DOI: 10.3390/toxins12070430
Dubois T., Faegri K., Perchat S., Lemy C., Buisson C., Nielsen-LeRoux C., Gohar M., Jacques P., Ramarao N., Kolstø A.-B., Lereclus D. 2012. Necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis. PLOS Pathogens 8 (4): e1002629. DOI: 10.1371/journal.ppat.1002629
Dyrektywa Parlamentu Europejskiego i Rady 2009/128/WE z dnia 21 października 2009 r. ustanawiająca ramy wspólnotowego działania na rzecz zrównoważonego stosowania pestycydów. 2009. Dziennik Urzędowy Unii Europejskiej L 309/71.
Fenibo E.O., Ijoma G.N., Matambo T. 2021. Biopesticides in sustainable agriculture: a critical sustainable development driver governed by green chemistry principles. Frontiers in Sustainable Food Systems 5: 619058. DOI: 10.3389/fsufs.2021.619058
Fernández-Chapa D., Ramírez-Villalobos J., Galán-Wong L. 2019. Toxic potential of Bacillus thuringiensis: an overview. s. 2–22. W: Protecting Rice Grains in the Post-Genomic Era (Y. Jia, red.). IntechOpen, 218 ss. ISBN 978-1-78984-388-0. https://www. intechopen.com/books/8021 [Accessed: 20.08.2024].
Forsyth G., Logan N.A. 2000. Isolation of Bacillus thuringiensis from northern Victoria land, Antarctica. Letters in Applied Microbiology 30 (3): 263–266. DOI: 10.1046/j.1472-765x.2000.00706.x
Gęsicka A., Henschke A., Barańska Z., Wolna-Maruwka A. 2020. Bacillus thuringiensis - nowy potencjał aplikacyjny. [Bacillus thuringiensis - new application potential]. Postępy Mikrobiologii 59 (4): 357–366. DOI: 10.21307/PM-2020.59.4.27
Griffitts J.S., Aroian R.V. 2005. Many roads to resistance: how invertebrates adapt to Bt toxins. BioEssays 27 (6): 614–624. DOI: 10.1002/bies.20239
Guerrero G.G., Favela-Hernandez J.M., Balderas-Renteria I. 2024. Plasmid vector(s) in Bacillus thuringiensis harbor genes for insect pest control and for neglected infectious diseases in humans. Frontiers in Tropical Diseases 5: 1416187. DOI: 10.3389/ fitd.2024.1416187
Guo Z., Kang S., Sun D., Gong L., Zhou J., Qin J., Guo L., Zhu L., Bai Y., Ye F., Wu Q., Wang S., Crickmore N., Zhou X., Zhang Y. 2020. MAPK-dependent hormonal signaling plasticity contributes to overcoming Bacillus thuringiensis toxin action in an insect host. Nature Communications 11 (1): 3003. DOI: 10.1038/s41467-020-16608-8
Helgason E., Økstad O.A., Caugant D.A., Johansen H.A., Fouet A., Mock M., Hegna I., Kolstø A.B. 2000. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis one species on the basis of genetic evidence. Applied and Environmental Microbiology 66 (6): 2627–2630. DOI: 10.1128/AEM.66.6.2627-2630.2000
Hernández-Fernández J. 2016. Bacillus thuringiensis: a natural tool in insect pest control. s. 121–139. W: The Handbook of Microbial Bioresources (V.K. Gupta, G.D. Sharma, M.G. Tuohy, R. Gaur, red.). CABI, 720 ss. ISBN 978-1-78064-521-6.
Horikoshi R.J., Bernardi O., Amaral F.S.D.A., Miraldo L.L., Durigan M.R., Bernardi D., Silva S.S., Omoto C. 2019. Lack of relevant cross-resistance to Bt insecticide XenTari in strains of Spodoptera frugiperda (J. E. Smith) resistant to Bt maize. Journal of Invertebrate Pathology 161: 1–6. DOI: 10.1016/j.jip.2018.12.008
Hung T.P., Truong L.V., Binh N.D., Frutos R., Quiquampoix H., Staunton S. 2016. Persistence of detectable insecticidal proteins from Bacillus thuringiensis (Cry) and toxicity after adsorption on contrasting soils. Environmental Pollution 208: 318–325. DOI: 10.1016/j.envpol.2015.09.046
Ibrahim M.A., Griko N., Junker M., Bulla L.A. 2010. Bacillus thuringiensis: a genomics and proteomics perspective. Bioengineered Bugs 1 (1): 31–50. DOI: 10.4161/bbug.1.1.10519
Jessberger N., Dietrich R., Granum P.E., Märtlbauer E. 2020. The Bacillus cereus food infection as a multifactorial process. Toxins 12 (11): 701. DOI: 10.3390/toxins12110701
Jones M.M., Robertson J.L., Weinzierl R.A. 2011. Susceptibility of oriental fruit moth (Lepidoptera: Tortricidae) to two pyrethroids and a proposed diagnostic dose of esfenvalerate for field detection of resistance. Journal of Economic Entomology 104 (3): 1031–1037. DOI: 10.1603/EC10399
Jouzani G.S., Valijanian E., Sharafi R. 2017. Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Applied Microbiology and Biotechnology 101: 2691–2711. DOI: 10.1007/s00253-017-8175-y
Jurat-Fuentes J.L., Heckel D.G., Ferré J. 2021. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. Annual Review of Entomology 66: 121–140. DOI: 10.1146/annurev-ento-052620-073348
Kabaluk T., Gazdik K. 2007. Directory of microbial pesticides for agricultural crops in OECD countries. Agriculture and Agri-Food Canada. https://publications.gc.ca/collections/collection_2009/agr/A42-107-2007E.pdf [Accessed: 20.08.2024].
Kashyap L., Goswami T.N., Patel V.K., Sharma R.K. 2017. Bacillus thuringiensis and insect pest management. s. 331–369. W: Biopesticides and Bioagents (M.A. Anwer, red.). Apple Academic Press, 418 ss. ISBN 978-177-188-51-95.
Khaleghi M., Khorrami S., Ravan H. 2019. Identification of Bacillus thuringiensis bacterial strain isolated from the mine soil as a robust agent in the biosynthesis of silver nanoparticles with strong antibacterial and anti-biofilm activities. Biocatalysis and Agricultural Biotechnology 18: 101047. DOI: 10.1016/j.bcab.2019.101047
Kirsch K., Schmutterer H. 1988. Low efficacy of a Bacillus thuringiensis (Berl.) formulation in controlling the diamondback moth, Plutella xylostella (L.), in the Philippines. Journal of Applied Entomology 105 (1–5): 249–255. DOI: 10.1111/j.1439- 0418.1988.tb00183.x
Knowles B.H., Ellar D.J. 1987. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity. Biochimica et Biophysica Acta (BBA) - General Subjects 924 (3): 509–518. DOI: 1016/0304-4165(87)90167-X
Konecka E., Kaznowski A., Baranek J. 2011. Wykorzystanie bakterii Bacillus thuringiensis do produkcji bioinsektycydów. [The usage of Bacillus thuringiensis for bioinsecticide production]. Postępy Mikrobiologii 50 (4): 303–311.
Kowalska J. 2023. Ochrona roślin w rolnictwie ekologicznym. s. 61–73. W: Rolnictwo ekologiczne w Polsce. Studia i Raporty IUNG – PIB (K. Jończyk, red.), Zeszyt 70 (24). Instytut Uprawy Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy, Puławy, 205 ss.
Lacey L.A., Arthurs S.P., Knight A., Huber J. 2007. Microbial control of lepidopteran pests of apple orchards. s. 557–576. W: Field Manual of Techniques in Invertebrate Pathology. 2nd Edition. Application and Evaluation of Pathogens for Control of Insects and Other Invertebrate Pests (L.A. Lacey, H.K. Kaya, red.). Kluwer Academic, 932 ss. DOI: 10.1007/978-1-4020-5933-9
Lacey L.A., Grzywacz D., Shapiro-Ilan D.I., Frutos R., Brownbridge M., Goettel M.S. 2015. Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology 132: 1–41. DOI: 10.1016/j.jip.2015.07.009
Las Heras S., Arimany M., Artola J., Bassols E. 2019. Desarrollo de métodos para una gestión integrada de la polilla del boj (Cydalima perspectalis) (Lepidoptera: Crambidae) en parques, jardines y espacios verdes. Phytoma 308: 56–63.
Lonc E., Lachowicz T.M. 1993. Aktualne i potencjalne możliwości zastosowania delta-endotoksyn Bacillus spp. w zwalczaniu szkodliwych i uciążliwych owadów. [Current and future use of Bacillus spp. delta – endotoxins in control of pest ans nuisance insects]. Wiadomości Parazytologiczne 39 (4): 345–356.
Lone S.A., Malik A., Padaria J.C. 2017. Characterization of lepidopteran-specific cry1 and cry2 gene harbouring native Bacillus thuringiensis isolates toxic against Helicoverpa armigera. Biotechnology Reports 15: 27–32. DOI: 10.1016/j.btre.2017.05.001
Maeda M., Mizuki E., Nakamura Y., Hatano T., Ohba M. 2000. Recovery of Bacillus thuringiensis from marine sediments of Japan. Current Microbiology 40 (6): 418–422. DOI: 10.1007/s002840010080
Makles Z., Domański W. 2008. Ślady pestycydów – niebezpieczne dla człowieka i środowiska. Bezpieczeństwo Pracy: Nauka i Praktyka 1: 5–9.
Malinowski H. 1997. Stan odporności ważniejszych szkodliwych owadów leśnych na insektycydy. Prace Instytutu Badawczego Leśnictwa, Seria A 830: 5–44.
Martin P.A., Travers R.S. 1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Applied and Environmental Microbiology 55 (10): 2437–2442. DOI: 10.1128/aem.55.10.2437-2442.1989
Matyjaszczyk E. 2008. Perspektywy zmian na rynku środków ochrony roślin w Polsce w świetle nowelizacji wymagań unijnych. Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie, Problemy Rolnictwa Światowego 4 (18): 300–308. DOI: 10.22630/PRS.2008.4.41
Maughan H., Van der Auwera G. 2011. Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infection, Genetics and Evolution 11 (5): 789–797. DOI: 10.1016/j.meegid.2011.02.001
Meadows M.P. 1993. Bacillus thuringiensis in the environment: ecology and risk assessment. s. 193–220. W: Bacillus thuringiensis, an Environmental Biopesticide: Theory and Practice (P.F. Entwistle, J.S. Cory, M.J. Bailey, S. Higgs, red.). John Wiley & Sons, Chichester, UK, 330 ss.
Mendoza-Almanza G., Esparza-Ibarra E.L., Ayala-Luján J.L., Mercado-Reyes M., Godina-González S., Hernández-Barrales M., Olmos-Soto J. 2020. The cytocidal spectrum of Bacillus thuringiensis toxins: from insects to human cancer cells. Toxins 12 (5): 301. DOI: 10.3390/toxins12050301
Miranda L.S., Rudd S.R., Mena O., Hudspeth P.E., Barboza-Corona J.E., Park H.W., Bideshi D.K. 2024. The perpetual vector mosquito threat and its eco-friendly nemeses. Biology 13 (3): 182. DOI: 10.3390/biology13030182
Nault B.A., Seaman A. 2019. Colorado potato beetle control with insecticides allowed for organic production, 2017 and 2018. Arthropod Management Tests 44 (1): tsz081. DOI: 10.1093/amt/tsz081
Nayak P.S., Arakha M., Kumar A., Asthana S., Mallick B.C., Jha S. 2016. An approach towards continuous production of silver nanoparticles using Bacillus thuringiensis. RSC Advances 6 (10): 8232–8242. DOI: 10.1039/C5RA21281B
NCBI 2023. Bacillus thuringiensis. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=1428&lvl=3 &p=has_linkout&p=blast_url&p=genome_blast&lin=f&keep=1&srchmode=1&unlock [Accessed: 20.08.2024].
Neale M.C. 1997. Biopesticides – harmonization of registration requirements within EU Directive 91/414 – an industry view 1. EPPO Bulletin 27 (1): 89–93. DOI: 10.1016/j.bcab.2019.101047
Nielsen-LeRoux C., Gaudriault S., Ramarao N., Lereclus D., Givaudan A. 2012. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Current Opinion in Microbiology 15 (3): 220–231. DOI: 10.1016/j.mib.2012.04.006
Niemiec W. 2024. Wykorzystanie proekologicznych preparatów w ochronie roślin sadowniczych. s. 99–102. 63. Ogólnopolska Naukowa Konferencja Ochrony Roślin Sadowniczych. Instytut Ogrodnictwa – Państwowy Instytut Badawczy, Skierniewice, 15 lutego 2024, 139 ss. ISBN 978-83-67039-31-4.
Olivieri M., Mannu R., Ruiu L., Ruiu P.A., Lentini A. 2021. Comparative efficacy trials with two different Bacillus thuringiensis serovar kurstaki strains against gypsy moth in mediterranean cork oak forests. Forests 12 (5): 602. DOI: 10.3390/f12050602
Palma L., Muñoz D., Berry C., Murillo J., Caballero P. 2014. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins 6 (12): 3296–3325. DOI: 10.3390/toxins6123296
Peng Q., Yu Q., Song F. 2019. Expression of cry genes in Bacillus thuringiensis biotechnology. Applied Microbiology and Biotechnology 103: 1617–1626. DOI: 10.1007/s00253-018-9552-x
Pinos D., Andrés-Garrido A., Ferré J., Hernández-Martínez P. 2021. Response mechanisms of invertebrates to Bacillus thuringiensis and its pesticidal proteins. Microbiology and Molecular Biology Reviews 85 (1): e00007-20. DOI: 10.1128/MMBR.00007-20
Piwowar A. 2018. Chemiczna ochrona roślin we współczesnym rolnictwie w perspektywie ekonomicznej i ekologicznej – korzyści, koszty oraz preferencje. Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu, 340 ss. ISBN 978-83-7695-681-7.
Pruszyński S., Pruszyński G. 2013. Zrównoważone stosowanie pestycydów. Zagadnienia Doradztwa Rolniczego 72 (2): 23–39.
Sajid M., Geng C., Li M., Wang Y., Liu H., Zheng J., Peng D., Sun M. 2018. Whole-genome analysis of Bacillus thuringiensis revealing partial genes as a source of novel Cry toxins. Applied and Environmental Microbiology 84 (14): e00277-18. DOI: 10.1128/AEM.00277-18
Sanchis V. 2011. From microbial sprays to insect-resistant transgenic plants: history of the biospesticides Bacillus thuringiensis. A review. Agronomy for Sustainable Development 31 (1): 217–231. DOI: 10.1051/agro/2010027
Sanchis V., Bourguet D. 2008. Bacillus thuringiensis: applications in agriculture and insect resistance management. A review. Agronomy for Sustainable Development 28 (1): 11–20. DOI: 10.1051/agro/2007054
Schwenk V., Riegg J., Lacroix M., Märtlbauer E., Jessberger N. 2020. Enteropathogenic potential of Bacillus thuringiensis isolates from soil, animals, food and biopesticides. Foods 9 (10): 1484. DOI: 10.3390/foods9101484
Sierpińska A. 2000. Bacillus thuringiensis w ochronie lasu – alternatywa dla insektycydów chemicznych. Prace Instytutu Badawczego Leśnictwa, Seria A 2 (895–899): 71–99.
Skrzecz I., Sierpińska A., Tumialis D. 2024. Entomopathogens in the integrated management of forest insects: from science to practice. Pest Management Science 80 (6): 2503–2514. DOI: 10.1002/ps.7871
Skrzecz I., Ślusarski S., Tkaczyk M. 2020. Integration of science and practice for Dendrolimus pini (L.) management – A review with special reference to Central Europe. Forest Ecology and Management 455: 117697. DOI: 10.1016/j.foreco.2019.117697
Skwiercz A., Zapałowska A. 2018. Nicienie entomopatogenne w lasach i szkółkach leśnych. [Entomopathogenic nematodes in the soil of forests and nurseries]. Sylwan 162 (12): 1018–1028.
Smith R.A., Couche G.A. 1991. The phylloplane as a source of Bacillus thuringiensis variants. Applied and Environmental Microbiology 57 (1): 311–315. DOI: 10.1128/aem.57.1.311-315.1991
Szwejda J. 2014. Szkodliwa entomofauna występująca na uprawach roślin warzywnych w Polsce, w latach 1861–2008. [Harmful entomofauna of vegetable crops occurring on fields in Poland, in 1861–2008]. Progress in Plant Protection 54 (1): 61–65. DOI: 10.14199/ppp-2014-011
Święcicka I. 2012. Bacillus thuringiensis w zwalczaniu owadów. s. 131–143. W: Kierunki rozwoju patologii owadów w Polsce (I. Skrzecz, A. Sierpińska, red.). Instytut Badawczy Leśnictwa, Sękocin Stary, 381 ss. ISBN 978-83-62830-11-4.
Święcicka I., Buczek J., Fiedoruk K. 2001. Bacillus thuringiensis w zwalczaniu owadów. [Bacillus thuringiensis – an insecticide]. Medycyna Weterynaryjna 57 (12): 859–862.
Tabashnik B.E., Brévault T., Carrière Y. 2013. Insect resistance to Bt crops: lessons from the first billion acres. Nature Biotechnology 31 (6): 510–521. DOI: 10.1038/nbt.2597
Tabashnik B.E., Cushing N.L., Finson N., Johnson M.W. 1990. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology 83 (5): 1671–1676. DOI: 10.1093/jee/83.5.1671
Tabashnik B.E., Fabrick J.A., Carrière Y. 2023. Global patterns of insect resistance to transgenic Bt crops: the first 25 years. Journal of Economic Entomology 116 (2): 297–309. DOI: 10.1093/jee/toac183
Tabone E., Capelli M., Morel E., De Bodard M., Colombel E., Guerin M., Deogratias J.M. 2022. An innovative and effective strategy for the biocontrol of the box tree moth. s. 43–50. W: XXXI International Horticultural Congress (IHC2022): International Symposium on Sustainable Control of Pests and Diseases, France, 14 August 2022, 425 ss.
Vilas-Bôas G.T., Santos C.A. 2012. Conjugation in Bacillus thuringiensis: insights into the plasmids exchange proces. s. 159–174. W: Bacillus thuringiensis Biotechnology (E. Sansinenea, red.). Springer, Dordrecht, 392 ss. ISBN 978-94-007-3020-5. e-ISBN 978-94-007-3021-2. DOI: 10.1007/978-94-007-3021-2_8
Wei S., Chelliah R., Park B.J., Kim S.H., Forghani F., Cho M.S., Park D.S., Jin Y.G., Oh D.H. 2019. Differentiation of Bacillus thuringiensis from Bacillus cereus group using a unique marker based on real-time PCR. Frontiers in Microbiology 10: 883. DOI: 10.3389/fmicb.2019.00883
Wraight S.P., Lacey L.A., Kabaluk J.T., Goettel M.S. 2009. Potential for microbial biological control of coleopteran and hemipteran pests of potato. Fruit Vegetable and Cereal Science and Biotechnology 3 (1): 25–38.
Zhao X., Zervas A., Hendriks M., Rajkovic A., Van Overbeek L., Hendriksen N.B., Uyttendaele M. 2022. Identification and characterization of Bacillus thuringiensis and other Bacillus cereus group isolates from spinach by whole genome sequencing. Frontiers in Microbiology 13: 1030921. DOI: 10.3389/fmicb.2022.1030921 |
Progress in Plant Protection (2024) : 0-0 |
Data pierwszej publikacji on-line: 2024-12-12 16:58:17 |
http://dx.doi.org/10.14199/ppp-2024-020 |
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy |