Progress in Plant Protection

Zanieczyszczenie gleb mikroplastikami i jego skutki dla roślin
Soil contamination by microplastics and its effects on plants

Aleksandra Zajączkowska, e-mail: a.zajaczkowska@iung.wroclaw.pl

Instytut Uprawy Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy, Zakład Herbologii, Orzechowa 61, 50-540 Wrocław, Polska

Marcin Bortniak, e-mail: m.bortniak@iung.wroclaw.pl

Instytut Uprawy Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy, Zakład Herbologii, Orzechowa 61, 50-540 Wrocław, Polska
Streszczenie

Mikro- i nanoplastiki (MNP) są wszechobecnymi zanieczyszczeniami środowiskowymi, które mogą być absorbowane przez rośliny, wpły­wając na ich rozwój i funkcjonowanie. Badania pokazują, że wielkość, ładunek powierzchniowy oraz właściwości fizykochemiczne MNP odgrywają kluczową rolę w procesie pobierania i transportu tych cząstek w roślinach. Większość nanocząstek polistyrenu akumuluje sięw korzeniach, a ich transport do części nadziemnych jest ograniczony. Mniejsze cząstki mają większą zdolność penetracji tkanek roślin­nych, co może prowadzić do ich przemieszczania się przez ksylem. Toksyczność MNP wynika z wywoływania stresu oksydacyjnego, za­burzeń wzrostu oraz uszkodzeń strukturalnych komórek, co może mieć poważne konsekwencje dla zdrowia roślin i bezpieczeństwa żyw­ności. Dodatkowo, interakcje MNP z metalami ciężkimi, takimi jak arsen, mogą nasilać negatywne skutki dla roślin. Wobec powyższego konieczne jest podjęcie dalszych badań nad wpływem MNP na rośliny, zwłaszcza w kontekście ich przenikania do łańcucha pokarmowego.

 

Micro- and nanoplastics (MNP) are ubiquitous environmental pollutants that can be absorbed by plants, affecting their growth and functioning. Research indicates that the size, surface charge, and physicochemical properties of MNP play a key role in the uptake and transport of these particles within plants. Most polystyrene nanoparticles accumulate in the roots, with limited transport to the above-ground parts. Smaller particles have a greater ability to penetrate plant tissues, potentially allowing them to move through the xylem. The toxicity of MNP stems from inducing oxidative stress, growth disturbances, and structural cell damage, which can have serious consequences for plant health and food safety. Moreover, interactions between MNP and heavy metals, such as arsenic, can exacerbate negative effects on plants. In view of the above, it is essential to undertake further research on the impact of MNP on plants, particularly regarding their penetration into the food chain.

Słowa kluczowe
bioakumulacja; mikroplastik; nanoplastik; stres oksydacyjny; transport w roślinach; bioaccumulation; microplastic; nanoplastic; oxidative stress; transport in plants
Referencje

Afrin S., Rahman M.M., Akbor M.A., Siddique M.A.B., Uddin M.K., Malafaia G. 2022. Is there tea complemented with the appealing flavor of microplastics? A pioneering study on plastic pollution in commercially available tea bags in Bangladesh. Science of the Total Environment 837: 155833. DOI: 10.1016/j.scitotenv.2022.155833

 

Amare G., Desta B. 2021. Coloured plastic mulches: impact on soil properties and crop productivity. Chemical and Biological Technologies in Agriculture 8 (1): 1–9. DOI: 10.1186/s40538-020-00201-8

 

Andrady A.L. 2011. Microplastics in the marine environment. Marine Pollution Bulletin 62 (8): 1596–1605. DOI: 10.1016/j.mar­polbul.2011.05.030

 

Avellan A., Schwab F., Masion A., Chaurand P., Borschneck D., Vidal V., Rose J., Santaella C., Levard C. 2017. Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyper­spectral imaging. Environmental Science & Technology 51 (15): 8682–8691. DOI: 10.1021/acs.est.7b01133

 

Blackburn K., Green D. 2022. The potential effects of microplastics on human health: What is known and what is unknown. Ambio 51 (3): 518–530. DOI: 10.1007/s13280-021-01589-9

 

Bosker T., Bouwman L.J., Brun N.R., Behrens P., Vijver M.G. 2019. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226: 774–781. DOI: 10.1016/j. chemosphere.2019.03.163

 

Conti G.O., Ferrante M., Banni M., Favara C., Nicolosi I., Cristaldi A., Fiore M., Zuccarello P. 2020. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environmental Research 187: 109677. DOI: 10.1016/j.envres.2020.109677

 

da Silva Brochado M.G., de Noronha B.G., da Costa Lima A., Guedes A.G., da Silva R.C., dos Santos Dias D.C.F., Mendes K.F. 2024. What is the most effective analytical method for quantification and identification of microplastics in contaminated soils? Environmental Geochemistry and Health 46 (7): 260. DOI: 10.1007/s10653-024-02082-4

 

de Souza Machado A.A., Kloas W., Zarfl C., Hempel S., Rillig M.C. 2018a. Microplastics as an emerging threat to terrestrial eco­systems. Global Change Biology 24 (4): 1405–1416. DOI: 10.1111/gcb.14020

 

de Souza Machado A.A., Lau C.W., Kloas W., Bergmann J., Bachelier J.B., Faltin E., Becker R., Görlich A.S., Rillig M.C. 2019. Microplastics can change soil properties and affect plant performance. Environmental Science & Technology 53 (10): 6044–6052. DOI: 10.1021/acs.est.9b01339

 

de Souza Machado A.A., Lau C.W., Till J., Kloas W., Lehmann A., Becker R., Rillig M.C. 2018b. Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology 52 (17): 9656–9665. DOI: 10.1021/acs.est.8b02212

 

Dong Y., Gao M., Qiu W., Song Z. 2021. Uptake of microplastics by carrots in presence of As (III): Combined toxic effects. Journal of Hazardous Materials 411: 125055. DOI: 10.1016/j.jhazmat.2021.125055

 

Dong Y., Gao M., Song Z., Qiu W. 2020. Microplastic particles increase arsenic toxicity to rice seedlings. Environmental Polluti­on 259: 113892. DOI: 10.1016/j.envpol.2019.113892

 

Dzierżyński E., Gawlik P.J., Puźniak D., Fliege W., Jóźwik K., Teresiński G., Flieger J. 2024. Microplastics in the human body: ex­posure, detection, and risk of carcinogenesis: a state-of-the-art review. Cancers 16 (21): 3703. DOI: 10.3390/cancers16213703

 

Fackelmann G., Sommer S. 2019. Microplastics and the gut microbiome: How chronically exposed species may suffer from gut dysbiosis. Marine Pollution Bulletin 143: 193–203. DOI: 10.1016/j.marpolbul.2019.04.030

 

Fei X., Wang J., Zhu J., Wang X., Liu X. 2020. Biobased poly (ethylene 2,5-furancoate): no longer an alternative, but an irre­placeable polyester in the polymer industry. ACS Sustainable Chemistry & Engineering 8 (23): 8471–8485. DOI: 10.1021/ acssuschemeng.0c01862

 

Gao H., Liu Q., Yan C., Mancl K., Gong D., He J., Mei X. 2022. Macro-and/or microplastics as an emerging threat effect crop growth and soil health. Resources, Conservation and Recycling 186: 106549. DOI: 10.1016/j.resconrec.2022.106549

 

Geyer R., Jambeck J.R., Law K.L. 2017. Production, use, and fate of all plastics evermade. Science Advances 3 (7): e1700782. DOI: 10.1126/sciadv.1700782

 

Gigault J., ter Halle A., Baudrimont M., Pascal P.-Y., Gauffre F., Phi T.-L., Hadri H.E., Grassl B., Reynaud S. 2018. Current opini­on: what is a nanoplastic? Environmental Pollution 235: 1030–1034. DOI: 10.1016/j.envpol.2018.01.024

 

Giorgetti L., Spanò C., Muccifora S., Bottega S., Barbieri F., Bellani L., Castiglione M.R. 2020. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiology and Biochemistry 149: 170–177. DOI: 10.1016/j.plaphy.2020.02.014

 

Gong W., Zhang W., Jiang M., Li S., Liang G., Bu Q., Xu L., Zhu H., Lu A. 2021. Species-dependent response of food crops to poly­styrene nanoplastics and microplastics. Science of the Total Environment 796: 148750. DOI: 10.1016/j.scitotenv.2021.148750

 

Huang Y., Liu Q., Jia W., Yan C., Wang J. 2020. Agricultural plastic mulching as a source of microplastics in the terrestrial envi­ronment. Environmental Pollution 260: 114096. DOI: 10.1016/j.envpol.2020.114096

 

Jia H., Wu D., Yu Y., Han S., Sun L., Li M. 2022. Impact of microplastics on bioaccumulation of heavy metals in rape (Brassica napus L.). Chemosphere 288: 132576. DOI: 10.1016/j.chemosphere.2021.132576

 

Jiang X., Chen H., Liao Y., Ye Z., Li M., Klobučar G. 2019. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environmental Pollution 250: 831–838. DOI: 10.1016/j.envpol.2019.04.055

 

Kędzierski M., Lechat B., Sire O., Le Maguer G., Le Tilly V., Bruzaud S. 2020. Microplastic contamination of packaged meat: Occurrence and associated risks. Food Packaging and Shelf Life 24 (1–2): 100489. DOI: 10.1016/j.fpsl.2020.100489

 

Kinigopoulou V., Pashalidis I., Kalderis D., Anastopoulos I. 2022. Microplastics as carriers of inorganic and organic contaminants in the environment: A review of recent progress. Journal of Molecular Liquids 350: 118580. DOI: 10.1016/j.molliq.2022.118580

 

Koelmans A.A., Nor N.H.M., Hermsen E., Kooi M., Mintenig S.M., De France J. 2019. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Research 155: 410–422. DOI: 10.1016/j.watres.2019.02.054

 

Li L., Luo Y., Li R., Zhou Q., Peijnenburg W.J.G.M., Yin N., Yang J., Tu C., Zhang Y. 2020. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability 3 (11): 929–937. DOI: 10.1038/s41893-020-0567-9

 

Li X., Mei Q., Chen L., Zhang H., Dong B., Dai X., He C., Zhou J. 2019. Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process. Water Research 157: 228–237. DOI: 10.1016/j. watres.2019.03.069

 

Liebezeit G., Liebezeit E. 2013. Non-pollen particulates in honey and sugar. Food Additives & Contaminants: Part A 30 (12): 2136–2140. DOI: 10.1080/19440049.2013.843025

 

Liebezeit G., Liebezeit E. 2014. Synthetic particles as contaminants in German beers. Food Additives & Contaminants: Part A 31 (9): 1574–1578. DOI: 10.1080/19440049.2014.945099

 

Liu C., Gao Y., He S., Chi H.-Y., Li Z.-C., Zhou X.-X., Yan B. 2021. Quantification of nanoplastic uptake in cucumber plants by pyrolysis gas chromatography/mass spectrometry. Environmental Science & Technology Letters 8 (8): 633–638. DOI: 10.1021/ acs.estlett.1c00369

 

Liu M., Lu S., Song Y., Lei L., Hu J., Lv W., Zhou W., Cao C., Shi H., Yang X., He D. 2018. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution 242, Part A: 855–862. DOI: 10.1016/j. envpol.2018.07.051

 

Luo Y., Li L., Feng Y., Li R., Yang J., Peijnenburg W.J., Tu C. 2022. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nature Nanotechnology 17 (4): 424–431. DOI: 10.1038/s41565-021-01063-3

 

Mammo F.K., Amoah I.D., Gani K.M., Pillay L., Ratha S.K., Bux F., Kumari S. 2020. Microplastics in the environment: In­teractions with microbes and chemical contaminants. Science of the Total Environment 743: 140518. DOI: 10.1016/j.scito­tenv.2020.140518

 

Mintenig S.M., Löder M.G.J., Primpke S., Gerdts G. 2019. Low numbers of microplastics detected in drinking water from ground water sources. Science of the Total Environment 648: 631–635. DOI: 10.1016/j.scitotenv.2018.08.178

 

Ng E.-L., Lwanga E.H., Eldridge S.M., Johnsto P., Hu H.-W., Geissen V., Chen D. 2018. An overview of microplastic and nano­plastic pollution in agroecosystems. Science of the Total Environment 627: 1377–1388. DOI: 10.1016/j.scitotenv.2018.01.341

 

Okeke E.S., Okoye C.O., Atakpa E.O., Ita R.E., Nyaruaba R., Mgbechidinma C.L., Akan O.D. 2022. Microplastics in agroeco­systems-impacts on ecosystem functions and food chain. Resources, Conservation and Recycling 177 (105961): 1–14. DOI: 10.1016/j.resconrec.2021.105961

 

Pivokonsky M., Cermakova L., Novotna K., Peer P., Cajthaml T., Janda V. 2018. Occurrence of microplastics in raw and treated drinking water. Science of the Total Environment 643: 1644–1651. DOI: 10.1016/j.scitotenv.2018.08.102

 

PlasticsEurope 2023. https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ [dostęp: 05.10.2024].

 

Qi Y., Beriot N., Gort G., Lwanga E.H., Gooren H., Yang X., Geissen V. 2020. Impact of plastic mulch film debris on soil physi­cochemical and hydrological properties. Environmental Pollution 266, Part 3: 115097. DOI: 10.1016/j.envpol.2020.115097

 

Rillig M.C. 2012. Microplastic in terrestrial ecosystems and the soil? Environmental Science & Technology 46 (12): 6453–6454. DOI: 10.1021/es302011r

 

Schymanski D., Goldbeck C., Humpf H.-U., Fürst P. 2018. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Research 129: 154–162. DOI: 10.1016/j.wa­tres.2017.11.011

 

Shruti V.C., Pérez-Guevara F., Elizalde-Martínez I., Kutralam-Muniasamy G. 2020. First study of its kind on the microplastic con­tamination of soft drinks, cold tea and energy drinks – Future research and environmental considerations. Science of the Total Environment 726: 138580. DOI: 10.1016/j.scitotenv.2020.138580

 

Sun X.D., Yuan X.Z., Jia Y., Feng L.J., Zhu F.P., Dong S.S., Liu J., Kong X., Tian H., Duan J.L., Ding Z., Wang S.G., Xing B. 2020. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology 15 (9): 755–760. DOI: 10.1038/s41565-020-0707-4

 

Teles M., Balasch J.C., Oliveira M., Sardans J., Peñuelas J. 2020. Insights into nanoplastics effects on human health. Science Bul­letin 65 (23): 1966–1969. DOI: 10.1016/j.scib.2020.08.00

 

Trapp S. 2000. Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Ma­nagement Science 56 (9): 767–778. DOI: 10.1002/1526-4998(200009)56:9<767::AID-PS198>3.0.CO;2-Q

 

van Raamsdonk L.W., van der Zande M., Koelmans A.A., Hoogenboom R.L., Peters R.J., Groot M.J., Peijnenburg A.C.M., Weese­poel Y.J. 2020. Current insights into monitoring, bioaccumulation, and potential health effects of microplastics present in the food chain. Foods 9 (1): 72. DOI: 10.3390/foods9010072

 

Vethaak A.D., Leslie H.A. 2016. Plastic debris is a human health issue. Environmental Science & Technology 50 (13): 6825–6826. DOI: 10.1021/acs.est.6b02569

 

Wan S., Wang X., Chen W., Wang M., Zhao J., Xu Z., Wang R., Mi C., Zheng Z., Zhang H. 2024. Exposure to high dose of poly­styrene nanoplastics causes trophoblast cell apoptosis and induces miscarriage. Particle and Fibre Toxicology 21 (1): 13. DOI: 10.1186/s12989-024-00574-w

 

Wang J., Liu X., Li Y., Powell T., Wang X., Wang G., Zhang P. 2019. Microplastics as contaminants in the soil environment: A mini-review. Science of the Total Environment 691: 848–857. DOI: 10.1016/j.scitotenv.2019.07.209

 

Wang F., Wang Q., Adams C.A., Sun Y., Zhang S. 2022a. Effects of microplastics on soil properties: Current knowledge and future perspectives. Journal of Hazardous Materials 424, Part C: 127531. DOI: 10.1016/j.jhazmat.2021.127531

 

Wang W., Yuan W., Xu E.G., Li L., Zhang H., Yang Y. 2022b. Uptake, translocation, and biological impacts of micro(nano)plastics in terrestrial plants: Progress and prospects. Environmental Research 203: 111867. DOI: 10.1016/j.envres.2021.111867

 

Wang J., Zhu J., Zheng Q., Wang D., Wang H., He Y., Wang J., Zhan X. 2023. In vitro wheat protoplast cytotoxicity of polystyrene nanoplastics. Science of the Total Environment 882: 163560. DOI: 10.1016/j.scitotenv.2023.163560

 

Weithmann N., Möller J.N., Löder M.G., Piehl S., Laforsch C., Freitag R. 2018. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Science Advances 4 (4): eaap8060. DOI: 10.1126/sciadv.aap8060

 

Wright S.L., Thompson R.C., Galloway T.S. 2013. The physical impacts of microplastics on marine organisms: A review. Environ­mental Pollution 178: 483–492. DOI: 10.1016/j.envpol.2013.02.031

 

Wu J., Liu W., Zeb A., Lian J., Sun Y., Sun H. 2021. Polystyrene microplastic interaction with Oryza sativa: toxicity and metabolic mechanism. Environmental Science: Nano 8 (12): 3699–3710. DOI: 10.1039/D1EN00636C

 

Xu B., Liu F., Cryder Z., Huang D., Lu Z., He Y., Wang H., Lu Z., Brookes P.C., Tang C., Gan J., Xu J. 2020. Microplastics in the soil environment: Occurrence, risks, interactions and fate – A review. Critical Reviews in Environmental Science and Techno­logy 50 (21): 2175–2222. DOI: 10.1080/10643389.2019.1694822

 

Zhou C.-Q., Lu C.-H., Mai L., Bao L.-J., Liu L.-Y., Zeng E.Y. 2021. Response of rice (Oryza sativa L.) roots to nanoplastic treat­ment at seedling stage. Journal of Hazardous Materials 401: 123412. DOI: 10.1016/j.jhazmat.2020.123412

 

Zhou P., Wang L., Gao J., Jiang Y., Adeel M., Hou D. 2023. Nanoplastic-plant interaction and implications for soil health. Soil Use and Management 39 (1): 13–42. DOI: 10.1111/sum.12868

Progress in Plant Protection (2025) : 0-0
Data pierwszej publikacji on-line: 2025-02-05 15:22:14
http://dx.doi.org/10.14199/ppp-2025-003
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy